Abstract 1194P
Background
Artificial intelligence (AI) based on deep learning and convolutional neural networks (CNN) has been applied to various medical fields. We are developing a novel AI system to support the detection of lung cancer, which will enable physicians to efficiently interpret radiograms and perform diagnosis.
Methods
For training data, we analyzed the image features of 800 chest X-ray images (acquired mainly for lung cancer screening; 400 normal images and 400 abnormal images) from Fukushima Preservative Service Association of Health and 5 000 chest radiographs from the National Institutes of Health (NIH) database. We categorized these data into two groups. Group A included both 800 images and NIH database, and group B included only 800 images. Then, using ImageNet, we used these datasets to develop a proprietary AI algorithm with deep learning and a CNN, and analyzed the statistical accuracy of interpretations of the radiograms. We also demonstrated abnormal shadow in the form of a heat map display on each chest radiograph for easy visualization, and presented the positive probability score as an index value from 0.0 to 1.0 indicating the possibility of lung cancer. The accuracy of our AI system was improved by using technology to account for differences in radiographic apparatus and imaging environments.
Results
Using a positive probability cutoff value of 0.5, our novel AI showed an area under the curve (AUC) of 0.74, sensitivity of 0.75, and specificity of 0.60 for group A, and AUC of 0.79, sensitivity of 0.72, and specificity of 0.74 for group B. The accuracy on both groups was superior to that of radiologists (AUC 0.72), and was also compatible with previous study reports (AUC 0.67-0.78). The number of training data did not make a difference in accuracy. The heat map display was also clearly demonstrated on the monitor screen if a roentgenogram had abnormal shadows.
Conclusions
In this study, we confirmed that our proprietary AI system had a similar accuracy in the interpretation of chest radiographs to that of previous studies and radiologists. However, further research and improvement is needed to verify the accuracy. We are now in the process of performing various types of validation.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
The authors.
Funding
Grants-in-Aid for Scientific Research in Japan.
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
202P - eIF4E inhibition exhibits anti-tumor activity and re-sensitizes acquired resistant KRAS G12C NSCLC to KRAS inhibitors
Presenter: Andrew Truong
Session: Poster session 09
203P - An innovative evidence-based laboratory medicine (EBLM) test to help doctors in multi-cancer early detection (MCED)
Presenter: Jose D Santotoribio
Session: Poster session 09
204P - Assessing biomarker testing awareness among patients and caregivers in NSCLC through an interdisciplinary global survey
Presenter: Rodrigo Paredes
Session: Poster session 09
205P - Detection and diagnosis of lung cancer by electronic nose analysis of exhaled breath: A multi-center prospective observational study
Presenter: Alessandra Buma
Session: Poster session 09
206P - Unveiling the link: How metabolic syndrome drives endometrial cancer progression
Presenter: Lirong Zhai
Session: Poster session 09
Resources:
Abstract
207P - Associations of diabetic background retinopathy and ER+ breast cancer risk: A Mendelian randomization study
Presenter: Shu Wang
Session: Poster session 09
208P - Role of plasma exosomes in crosstalk between immune system and hereditary ovarian cancer: Opportunity or challenge?
Presenter: Daniele Fanale
Session: Poster session 09
209P - A novel method for early evaluation of drug-specific predictive biomarker
Presenter: Gal Dinstag
Session: Poster session 09
210P - Therapeutic implications of phosphoproteomics in molecular cancer diagnostics
Presenter: Annika Schneider
Session: Poster session 09
211P - GynePDX: A new platform of preclinical models for endometrial and ovarian cancers
Presenter: Melek Denizli
Session: Poster session 09