Abstract 1194P
Background
Artificial intelligence (AI) based on deep learning and convolutional neural networks (CNN) has been applied to various medical fields. We are developing a novel AI system to support the detection of lung cancer, which will enable physicians to efficiently interpret radiograms and perform diagnosis.
Methods
For training data, we analyzed the image features of 800 chest X-ray images (acquired mainly for lung cancer screening; 400 normal images and 400 abnormal images) from Fukushima Preservative Service Association of Health and 5 000 chest radiographs from the National Institutes of Health (NIH) database. We categorized these data into two groups. Group A included both 800 images and NIH database, and group B included only 800 images. Then, using ImageNet, we used these datasets to develop a proprietary AI algorithm with deep learning and a CNN, and analyzed the statistical accuracy of interpretations of the radiograms. We also demonstrated abnormal shadow in the form of a heat map display on each chest radiograph for easy visualization, and presented the positive probability score as an index value from 0.0 to 1.0 indicating the possibility of lung cancer. The accuracy of our AI system was improved by using technology to account for differences in radiographic apparatus and imaging environments.
Results
Using a positive probability cutoff value of 0.5, our novel AI showed an area under the curve (AUC) of 0.74, sensitivity of 0.75, and specificity of 0.60 for group A, and AUC of 0.79, sensitivity of 0.72, and specificity of 0.74 for group B. The accuracy on both groups was superior to that of radiologists (AUC 0.72), and was also compatible with previous study reports (AUC 0.67-0.78). The number of training data did not make a difference in accuracy. The heat map display was also clearly demonstrated on the monitor screen if a roentgenogram had abnormal shadows.
Conclusions
In this study, we confirmed that our proprietary AI system had a similar accuracy in the interpretation of chest radiographs to that of previous studies and radiologists. However, further research and improvement is needed to verify the accuracy. We are now in the process of performing various types of validation.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
The authors.
Funding
Grants-in-Aid for Scientific Research in Japan.
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
212P - BRGSF-HIS mice as a predictive tool for safety assessment of biologics
Presenter: Kader Thiam
Session: Poster session 09
213P - Constructing a high-definition patient-digital twin (PDT) in treatment-naïve women with advanced cancer
Presenter: Leonardo Garma
Session: Poster session 09
215P - Detection of MUTYH for the prognosis and chemotherapy responsiveness of patients with non-small cell lung cancer
Presenter: Chi Wai Wong
Session: Poster session 09
216P - β-catenin is a potential prognostic biomarker in uterine sarcoma
Presenter: Ying Cai
Session: Poster session 09
218P - Exploiting a unique glycosaminoglycan for novel pan-cancer therapies and diagnostics
Presenter: Mette Agerbæk
Session: Poster session 09
219P - The landscape and prognostic impact of germline HLA-A subtypes in patients with advanced solid cancers
Presenter: Kyrillus Shohdy
Session: Poster session 09
220P - The role of fucosyltransferase 1 (FUT1) in CRC as a putative prognostic and predictive biomarker
Presenter: Lorenz Pammer
Session: Poster session 09
221P - ANGPTL4's role in cancer: A meta analysis and bioinformatics exploration
Presenter: Osama Younis
Session: Poster session 09
222P - Artificial intelligence (AI) based prognostication from baseline computed tomography (CT) scans in a phase III advanced non-small cell lung cancer (aNSCLC) trial
Presenter: Omar Khan
Session: Poster session 09