Abstract 1194P
Background
Artificial intelligence (AI) based on deep learning and convolutional neural networks (CNN) has been applied to various medical fields. We are developing a novel AI system to support the detection of lung cancer, which will enable physicians to efficiently interpret radiograms and perform diagnosis.
Methods
For training data, we analyzed the image features of 800 chest X-ray images (acquired mainly for lung cancer screening; 400 normal images and 400 abnormal images) from Fukushima Preservative Service Association of Health and 5 000 chest radiographs from the National Institutes of Health (NIH) database. We categorized these data into two groups. Group A included both 800 images and NIH database, and group B included only 800 images. Then, using ImageNet, we used these datasets to develop a proprietary AI algorithm with deep learning and a CNN, and analyzed the statistical accuracy of interpretations of the radiograms. We also demonstrated abnormal shadow in the form of a heat map display on each chest radiograph for easy visualization, and presented the positive probability score as an index value from 0.0 to 1.0 indicating the possibility of lung cancer. The accuracy of our AI system was improved by using technology to account for differences in radiographic apparatus and imaging environments.
Results
Using a positive probability cutoff value of 0.5, our novel AI showed an area under the curve (AUC) of 0.74, sensitivity of 0.75, and specificity of 0.60 for group A, and AUC of 0.79, sensitivity of 0.72, and specificity of 0.74 for group B. The accuracy on both groups was superior to that of radiologists (AUC 0.72), and was also compatible with previous study reports (AUC 0.67-0.78). The number of training data did not make a difference in accuracy. The heat map display was also clearly demonstrated on the monitor screen if a roentgenogram had abnormal shadows.
Conclusions
In this study, we confirmed that our proprietary AI system had a similar accuracy in the interpretation of chest radiographs to that of previous studies and radiologists. However, further research and improvement is needed to verify the accuracy. We are now in the process of performing various types of validation.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
The authors.
Funding
Grants-in-Aid for Scientific Research in Japan.
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
825P - Ultra-sensitive cfDNA analysis for minimally invasive measurable residual disease detection and profiling in multiple myeloma
Presenter: Natalia Buenache
Session: Poster session 09
826P - Efficacy of non-doxorubicin based regimens in severely G6PD deficient patients with DLBCL
Presenter: Shruti Prem Sudha
Session: Poster session 09
827P - Comparison of efficacy and safety between glofitamab and real-world regimens among Chinese patients with 3L+ relapsed/refractory diffuse large B-cell lymphoma: An external control study
Presenter: Keshu Zhou
Session: Poster session 09
828P - Translocation 11;14 is not associated with adverse prognosis in the era of novel anti-myeloma therapeutics
Presenter: Ioannis Ntanasis-Stathopoulos
Session: Poster session 09
829P - Flumatinib combined with chemotherapy for newly diagnosed adult with Ph-positive acute lymphoblastic leukemia: A single-center, retrospective observational study
Presenter: HAN SHUYU
Session: Poster session 09
830P - Prognostic model of pediatric AML patients with RUNX1-RUNX1T1 fusion gene
Presenter: Yang Xun
Session: Poster session 09
Resources:
Abstract
831P - Impact of chronic kidney disease on disease outcomes in hospitalized multiple myeloma patients: A National inpatient sample study from 2016 to 2020
Presenter: Marco Bermudez
Session: Poster session 09
Resources:
Abstract
832P - CLOMB: A validated scoring model to predict the relapse in the central nervous system of pediatric acute B-cell lymphoblastic leukemia
Presenter: Jiacheng Li
Session: Poster session 09
Resources:
Abstract
833P - Latest results of GVM±R regimen for the salvage therapy of patients with relapsed or refractory aggressive non-Hodgkin's lymphoma
Presenter: Wei Liu
Session: Poster session 09
834P - Treatment of DLBCL in HIV patient: Still a dilemma
Presenter: Devashish Desai
Session: Poster session 09