Abstract 1243P
Background
Ocular surface squamous neoplasia (OSSN) is a common eye surface neoplastic disease ranging from non-invasive conjunctival intraepithelial neoplasia (CIN) to invasive forms of squamous cell carcinoma (SCC) that accounts for approximately 10% of ocular surface lesions. Early detection of OSSN is crucial for effective treatment. However, clinical symptoms of OSSN vary, which can result in delayed or inappropriate diagnosis without appropriate diagnostic methods. Currently, the diagnosis of OSSN relies on clinical suspicion confirmed by impression cytology or biopsy, which are invasive and may not detect small lesions. This study aims to introduce an artificial intelligence data analysis framework to empower a newly designed autofluorescence hyperspectral imaging technology developed in our group for OSSN detection.
Methods
We recruited 20 patients who had previously been diagnosed with OSSN. Biopsy specimens were collected from the patients and reprocessed without staining to obtain autofluorescence microscopy images using 25 spectral channels, each with a distinctive excitation-emission wavelength. The spectral images were pre-processed to remove unwanted random noise and then spectral features were extracted from the epithelial section of tissue images. Further, the spectral features were used to form an artificial feature image patch to train a convolutional neural network for image classification.
Results
The technique was evaluated against pathological assessment, and results showed the multispectral analysis was able to detect OSSN in all tested patients (P-value < 0.05). The trained classifier on OSSN and normal sections was found to have great performance (AUC > 83%). The maps produced by the analysis were in close agreement with margins observed in H&E sections. The fully automated diagnostic method based on AI methodology produced maps of the neoplastic-non neoplastic interface that could be generated in quasi-real time and used for intraoperative assessment.
Conclusions
The study demonstrated the feasibility of using AI empowered hyperspectral autofluorescence imaging to detect OSSN and the potential for the technique to be used as a diagnostic tool in future clinical applications.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
The authors.
Funding
Cancer Institute NSW.
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
1229P - Selective phenotypic and genotypic evaluation of circulating glial cells for improved diagnosis of glial malignancies
Presenter: Sewanti Limaye
Session: Poster session 14
1230P - hPG80 (circulating progastrin) is a new blood-based biomarker for diagnosis of early-stage non-small cell lung cancers
Presenter: Paul Hofman
Session: Poster session 14
1231P - Machine learning prediction of the case-fatality of COVID-19 and risk factors for adverse outcomes in patients with non-small cell lung cancer
Presenter: Yeji Jung
Session: Poster session 14
1232P - Analytic analysis of PanSeer7, a targeted bisulfite sequencing assay for blood-based multi-cancer detection for cancer early detection and tissue-of-origin identification
Presenter: Xinrong Yang
Session: Poster session 14
1233P - Accurate prediction of gastrointestinal cancer tissue of origin using comprehensive plasma cell-free DNA fragmentomics features
Presenter: Xinrong Yang
Session: Poster session 14
1234P - HistoMate: Automated preprocessing software for digital histopathology image to enhance deep learning
Presenter: Jinok Lee
Session: Poster session 14
1235P - Enrichment of rare cancers in pragmatic precision cancer medicine trial: Experience from IMPRESS-Norway
Presenter: Aaslaug Helland
Session: Poster session 14
1236P - Feasibility of online symptom monitoring to detect lung cancer relapse in Poland
Presenter: Ewa Pawlowska
Session: Poster session 14
1237P - Design and validation of a custom next-generation sequencing panel in melanoma, glioma and gastrointestinal stromal tumor
Presenter: Xiaoyan Zhou
Session: Poster session 14
1238P - Detecting driver mutations by AmoyDx 11-gene PCR with high concordance with next-generation sequencing in Chinese non-small cell lung cancer patients
Presenter: Dongmei Lin
Session: Poster session 14