Abstract 166P
Background
Long term treatment related toxicity is a major issue for breast cancer patients in the adjuvant setting. Predicting toxicities may allow us to adapt the treatment strategy. We assessed whether the metabolomic profile of patients may predict long-term toxicities.
Methods
High-resolution untargeted metabolomics was performed at baseline for 857 ER-positive, HER2- breast cancer patients from the CANTO prospective cohort. Four metabolomic profiles per patient were produced: (i) shared and annotated metabolites (n=224), (ii) annotated but not always common metabolites (n=456), (iii) annotated but not always shared metabolites (n=766) and (iv) all metabolites (n=1693, FullMet). Samples were split into a discovery and validation set. We benchmarked algorithms adapted for high dimensional analysis (LASSO, Adaptive LASSO, machine learning, and deep learning) in order to select best models for prediction.
Results
30.0% of patients were >65 years old, 24.4% <50 years old, 20.4% had BMI>30, 12.7% had previous history of neurological disorders, 6.1% had diabetes. 69.6% presented with pT1, 25.7% with pT2 and 3.4% with pT3; 11.1% had lymph node involvement. Among all benchmarked, adaptive LASSO was the most interesting statistical method with limited optimism bias. It also allows the selection of a subset of metabolites of particular interest. The addition of rare metabolites as well as non-annotated metabolites significantly increase the predictive power of models. Metabolic toxicity prediction mainly relied on endogenous metabolites while neurological toxicities were partly predicted using exogenous/environmental metabolites. In the validation set, compared to clinical data alone (AUC 0.50-0.54), addition of metabolomics data shows moderate (AUC = 0.55-0.60) but significant (p<0.05 adjusted for multiple comparison) predictive ability for neurological and metabolic toxicities.
Conclusions
Breast cancer patient metabolomic profile at baseline improves toxicity prediction after adjuvant chemotherapy, similar to what is reported for genomic fingerprints. Untargeted metabolomics allows the achievement of higher performance by taking into account environmental exposure, metabolites linked to microbiota as well as rare and uncommon metabolites.
Clinical trial identification
NCT01993498.
Editorial acknowledgement
Legal entity responsible for the study
The authors.
Funding
CANTO consortium.
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
197P - Clinical benefit of HER2-targeted therapies versus prior chemotherapy in refractory HER2 expressing and mutant gastrointestinal malignancies
Presenter: Vishesh Khanna
Session: Poster session 01
198P - Detection of ERBB2 (HER2) amplification by next-generation sequencing (NGS) in patients (pts) with gastrointestinal (GI) cancer
Presenter: Yunxiang Qi
Session: Poster session 01
199P - Novel machine learning (ML) algorithm to predict immunotherapy response in small cell (SCLC) and non-small cell (NSCLC) lung cancer
Presenter: Lakshya Sharma
Session: Poster session 01
200P - Precise tumor & patient selection for CDR404: A bispecific & bivalent MAGE-A4 T cell engager
Presenter: Giorgia Giacomazzi
Session: Poster session 01
201P - Afatinib for EGFR, HER2 or HER3 mutated solid tumors: A phase II Belgian precision study
Presenter: Lore Decoster
Session: Poster session 01
202P - Participant perceptions and mammography adherence from DETECT-A: The first prospective interventional trial of a multi-cancer early detection (MCED) blood test
Presenter: Nicholas Papadopoulos
Session: Poster session 01
203P - Genomic characterization of sporadic MET amplified non-small cell lung cancer (NSCLC) and association with real-world outcomes
Presenter: Ryan Gentzler
Session: Poster session 01
204P - Performance assessment of a comprehensive genomic profiling (CGP) NGS kit across multiple study laboratories
Presenter: Jonathan Choi
Session: Poster session 01
205P - A novel immunoprecipitation/PCR method for detection of plasma cfDNA fragments selectively occupied by CTCF in cancer
Presenter: Dorian Pamart
Session: Poster session 01
206P - WAYFIND-R: A global, real-world database of patients (pts) with a solid tumour profiled with next-generation sequencing (NGS)
Presenter: Jean-Yves Blay
Session: Poster session 01