Abstract 166P
Background
Long term treatment related toxicity is a major issue for breast cancer patients in the adjuvant setting. Predicting toxicities may allow us to adapt the treatment strategy. We assessed whether the metabolomic profile of patients may predict long-term toxicities.
Methods
High-resolution untargeted metabolomics was performed at baseline for 857 ER-positive, HER2- breast cancer patients from the CANTO prospective cohort. Four metabolomic profiles per patient were produced: (i) shared and annotated metabolites (n=224), (ii) annotated but not always common metabolites (n=456), (iii) annotated but not always shared metabolites (n=766) and (iv) all metabolites (n=1693, FullMet). Samples were split into a discovery and validation set. We benchmarked algorithms adapted for high dimensional analysis (LASSO, Adaptive LASSO, machine learning, and deep learning) in order to select best models for prediction.
Results
30.0% of patients were >65 years old, 24.4% <50 years old, 20.4% had BMI>30, 12.7% had previous history of neurological disorders, 6.1% had diabetes. 69.6% presented with pT1, 25.7% with pT2 and 3.4% with pT3; 11.1% had lymph node involvement. Among all benchmarked, adaptive LASSO was the most interesting statistical method with limited optimism bias. It also allows the selection of a subset of metabolites of particular interest. The addition of rare metabolites as well as non-annotated metabolites significantly increase the predictive power of models. Metabolic toxicity prediction mainly relied on endogenous metabolites while neurological toxicities were partly predicted using exogenous/environmental metabolites. In the validation set, compared to clinical data alone (AUC 0.50-0.54), addition of metabolomics data shows moderate (AUC = 0.55-0.60) but significant (p<0.05 adjusted for multiple comparison) predictive ability for neurological and metabolic toxicities.
Conclusions
Breast cancer patient metabolomic profile at baseline improves toxicity prediction after adjuvant chemotherapy, similar to what is reported for genomic fingerprints. Untargeted metabolomics allows the achievement of higher performance by taking into account environmental exposure, metabolites linked to microbiota as well as rare and uncommon metabolites.
Clinical trial identification
NCT01993498.
Editorial acknowledgement
Legal entity responsible for the study
The authors.
Funding
CANTO consortium.
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
207P - Palbociclib (P) in patients (pts) with solid tumors with CDK4 or CDK6 amplification (amp): Results from the Targeted Agent and Profiling Utilization Registry (TAPUR) study
Presenter: Maged Khalil
Session: Poster session 01
208P - Identification of BCOR mutation as a novel predictor of immunotherapy efficacy in gastrointestinal tumors
Presenter: Wuping Wang
Session: Poster session 01
209P - Molecular atlas of copy number variation(CNV) in lung cancer with brain metastases
Presenter: Xianfeng Zhang
Session: Poster session 01
210P - Lung tumour vascularity is a risk factor for survival in NSCLC patients undergoing surgery
Presenter: Andrea Riccardo Filippi
Session: Poster session 01
211P - Cost-efficient detection of NTRK1, NTRK2 and NTRK3 gene rearrangements using the test for 5’/3’-end unbalanced expression: The analysis of 8075 patients
Presenter: Evgeny Imyanitov
Session: Poster session 01
212P - Extracellular vesicle miRNA as effective biomarkers for predicting antitumor efficacy in lung adenocarcinoma treated with chemotherapy and checkpoint blockade
Presenter: Si Sun
Session: Poster session 01
213P - Unlocking cancer treatment opportunities by population-based advanced diagnostics in Norway
Presenter: Hege Russnes
Session: Poster session 01
214P - PESSA: A shiny app for pathway enrichment score-based survival analysis in cancer
Presenter: Ying Shi
Session: Poster session 01
215P - Identifying predictors of overall survival among TMB-low cancer patients treated with immune checkpoint inhibitors
Presenter: Camila Xavier
Session: Poster session 01
216P - PTCH1 mutation as a potential predictor of immune checkpoint inhibitors in gastrointestinal cancer
Presenter: Yang Tang
Session: Poster session 01