Abstract 166P
Background
Long term treatment related toxicity is a major issue for breast cancer patients in the adjuvant setting. Predicting toxicities may allow us to adapt the treatment strategy. We assessed whether the metabolomic profile of patients may predict long-term toxicities.
Methods
High-resolution untargeted metabolomics was performed at baseline for 857 ER-positive, HER2- breast cancer patients from the CANTO prospective cohort. Four metabolomic profiles per patient were produced: (i) shared and annotated metabolites (n=224), (ii) annotated but not always common metabolites (n=456), (iii) annotated but not always shared metabolites (n=766) and (iv) all metabolites (n=1693, FullMet). Samples were split into a discovery and validation set. We benchmarked algorithms adapted for high dimensional analysis (LASSO, Adaptive LASSO, machine learning, and deep learning) in order to select best models for prediction.
Results
30.0% of patients were >65 years old, 24.4% <50 years old, 20.4% had BMI>30, 12.7% had previous history of neurological disorders, 6.1% had diabetes. 69.6% presented with pT1, 25.7% with pT2 and 3.4% with pT3; 11.1% had lymph node involvement. Among all benchmarked, adaptive LASSO was the most interesting statistical method with limited optimism bias. It also allows the selection of a subset of metabolites of particular interest. The addition of rare metabolites as well as non-annotated metabolites significantly increase the predictive power of models. Metabolic toxicity prediction mainly relied on endogenous metabolites while neurological toxicities were partly predicted using exogenous/environmental metabolites. In the validation set, compared to clinical data alone (AUC 0.50-0.54), addition of metabolomics data shows moderate (AUC = 0.55-0.60) but significant (p<0.05 adjusted for multiple comparison) predictive ability for neurological and metabolic toxicities.
Conclusions
Breast cancer patient metabolomic profile at baseline improves toxicity prediction after adjuvant chemotherapy, similar to what is reported for genomic fingerprints. Untargeted metabolomics allows the achievement of higher performance by taking into account environmental exposure, metabolites linked to microbiota as well as rare and uncommon metabolites.
Clinical trial identification
NCT01993498.
Editorial acknowledgement
Legal entity responsible for the study
The authors.
Funding
CANTO consortium.
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
217P - Clinical and molecular features of PTCH1 mutant in solid tumors
Presenter: Xuezheng Li
Session: Poster session 01
218P - Peripheral T cell activation phenotype is associated with clinical outcomes and immune-related adverse events of ipilimumab-nivolumab in advanced hepatocellular carcinoma
Presenter: WON SUK LEE
Session: Poster session 01
219P - Multicentric evaluation of amplicon-based next-generation sequencing solution for local comprehensive molecular tumor profiling
Presenter: Eloisa Jantus Lewintre
Session: Poster session 01
220P - Biomarker of blood age and inflammation in older cancer patients might predict outcome
Presenter: Marcus Vetter
Session: Poster session 01
221P - Peripheral T cell activation phenotype predicts clinical outcomes of atezolizumab-bevacizumab therapy in unresectable hepatocellular carcinoma
Presenter: Chan Kim
Session: Poster session 01
222P - Therapeutic opportunities for porcupine inhibition in gastrointestinal cancer
Presenter: Natalie Cook
Session: Poster session 01
223P - Artificial intelligence-based pathomics biomarker predict primary resistance to first-line treatment in metastatic colorectal cancers
Presenter: Gianluca Mauri
Session: Poster session 01
224P - Germline HLA-I/II is not associated with clinical outcome but the absence of HLA-A01 or the presence of HLA-B27 supertypes were correlated with improved clinical outcome among patients with NSCLC treated with pembrolizumab in combination with chemotherapy
Presenter: Afaf Abed
Session: Poster session 01
225P - Utility of next-generation sequencing (NGS) in patients with advanced cancer in a low-middle income country
Presenter: Milton Lombana Quinonez
Session: Poster session 01
226P - LongiBloodImmunoM: A multi-step analysis pipeline for longitudinal blood-based immunomonitoring for immunotherapy clinical trial
Presenter: Jiangfeng Ye
Session: Poster session 01