Abstract 1234P
Background
Recently, the field of digital pathology has seen an increase in research utilizing deep learning techniques. This allows for predictions such as cancer diagnosis, prognosis, and treatment response, which previously required additional analysis, such as genetic analysis that was both time-consuming and costly, to be made based on pathological imaging. However, digital pathology images often contain noise, such as inconsistent staining and inconsistent annotations. To address this issue, image preprocessing is essential in deep learning analysis of digital pathology images, and various preprocessing techniques have been proposed to address issues such as bias, overfitting, and robust deep learning model development. However, automated preprocessing methods for digital pathology images have not yet been fully developed.
Methods
To address this, we have developed a user-friendly tool for image preprocessing analysis called HistoMate.
Results
HistoMate provides GUI-based image segmentation, image tiling, color normalization, and deep learning-based data augmentation to automate the preprocessing process. It also provides functionality to evaluate image quality and select appropriate patches.
Conclusions
In conclusion, HistoMate provides an automated preprocessing tool for pathological image-based research, accelerating digital pathology-based research.
Clinical trial identification
Editorial acknowledgement
This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean Government (MSIT) (grant no. NRF-2021R1C1C1013706), and research fund by Seoul National University Bundang Hospital (grant no. 14-2018-0013).
Legal entity responsible for the study
The authors.
Funding
This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean Government (MSIT) (grant no. NRF-2021R1C1C1013706), and research fund by Seoul National University Bundang Hospital (grant no. 14-2018-0013).
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
1219P - Artificial intelligence-based breast cancer detection facilitates automated prognosis marker assessment using multiplex fluorescence immunohistochemistry
Presenter: Tim Mandelkow
Session: Poster session 14
1220P - Comprehensive diagnose of programmed death-ligand 1 from two-dimensional to three-dimensional in breast cancer with computer-aided artificial intelligence system
Presenter: Yi-Hsuan Lee
Session: Poster session 14
1221P - The functional domain of BRCA1/2 pathogenic variants (PVs) as potential biomarkers of second tumor and domain-related sensitivity to PARP-inhibitors
Presenter: Lorena Incorvaia
Session: Poster session 14
1222P - Detection of androgen-receptor splice variant 7 messenger RNA in circulating tumor cells of prostate cancer by in vitro assay
Presenter: Hoin Kang
Session: Poster session 14
1223P - Homologous recombination deficiency (HRD) testing on ovarian cancer ascites: A feasibility study
Presenter: Alberto Ranghiero
Session: Poster session 14
1224P - Detection of circulating tumor DNA (ctDNA) in untreated patients (pts) with cancer: Implications for early cancer detection (ECD)
Presenter: Yoshiaki Nakamura
Session: Poster session 14
1225P - Combining ctDNA and tissue-based-genomic profiling in advanced cancer: A real-world evidence prospective study in non-Western patients treated at Gustave Roussy cancer campus
Presenter: Tony Ibrahim
Session: Poster session 14
1226P - Multi-site validation of a deep learning solution for HER2 profiling of breast cancer from H&E-stained pathology slides
Presenter: Salim Arslan
Session: Poster session 14
1227P - Novel in vivo photonics-immunoassay system, inPROBE, for the rapid detection of HER2 in breast cancer
Presenter: Magdalena Staniszewska
Session: Poster session 14
1228P - A circulating tumor cell (CTC) based assay for diagnostic immunocytochemistry profiling of lung cancer
Presenter: Nitesh Rohatgi
Session: Poster session 14