Abstract 1234P
Background
Recently, the field of digital pathology has seen an increase in research utilizing deep learning techniques. This allows for predictions such as cancer diagnosis, prognosis, and treatment response, which previously required additional analysis, such as genetic analysis that was both time-consuming and costly, to be made based on pathological imaging. However, digital pathology images often contain noise, such as inconsistent staining and inconsistent annotations. To address this issue, image preprocessing is essential in deep learning analysis of digital pathology images, and various preprocessing techniques have been proposed to address issues such as bias, overfitting, and robust deep learning model development. However, automated preprocessing methods for digital pathology images have not yet been fully developed.
Methods
To address this, we have developed a user-friendly tool for image preprocessing analysis called HistoMate.
Results
HistoMate provides GUI-based image segmentation, image tiling, color normalization, and deep learning-based data augmentation to automate the preprocessing process. It also provides functionality to evaluate image quality and select appropriate patches.
Conclusions
In conclusion, HistoMate provides an automated preprocessing tool for pathological image-based research, accelerating digital pathology-based research.
Clinical trial identification
Editorial acknowledgement
This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean Government (MSIT) (grant no. NRF-2021R1C1C1013706), and research fund by Seoul National University Bundang Hospital (grant no. 14-2018-0013).
Legal entity responsible for the study
The authors.
Funding
This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean Government (MSIT) (grant no. NRF-2021R1C1C1013706), and research fund by Seoul National University Bundang Hospital (grant no. 14-2018-0013).
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
1816P - Combination treatment with radium-223 (223Ra) and enzalutamide (enza) in patients (pts) with metastatic castration-resistant prostate cancer (mCRPC) in the REASSURE study
Presenter: Bertrand Tombal
Session: Poster session 14
1817P - A phase I/II efficacy and safety study of LAE001/prednisone and afuresertib in patients with metastatic castration-resistant prostate cancer (mCRPC) following 1-3 lines of standard of care
Presenter: Elan Diamond
Session: Poster session 14
1818P - Final results from a randomized phase II study of cabazitaxel (CBZ) versus an androgen receptor targeted agent (ARTA) in patients with poor-prognosis castration-resistant prostate cancer (mCRPC)
Presenter: Kim van der Zande
Session: Poster session 14
1819P - PSMA-BAT: Prospective biomarker trial of patients (pts) with metastatic castration-resistant prostate cancer (mCRPC) undergoing bipolar androgen therapy (BAT)
Presenter: Aline Lara Gongora
Session: Poster session 14