Abstract 1234P
Background
Recently, the field of digital pathology has seen an increase in research utilizing deep learning techniques. This allows for predictions such as cancer diagnosis, prognosis, and treatment response, which previously required additional analysis, such as genetic analysis that was both time-consuming and costly, to be made based on pathological imaging. However, digital pathology images often contain noise, such as inconsistent staining and inconsistent annotations. To address this issue, image preprocessing is essential in deep learning analysis of digital pathology images, and various preprocessing techniques have been proposed to address issues such as bias, overfitting, and robust deep learning model development. However, automated preprocessing methods for digital pathology images have not yet been fully developed.
Methods
To address this, we have developed a user-friendly tool for image preprocessing analysis called HistoMate.
Results
HistoMate provides GUI-based image segmentation, image tiling, color normalization, and deep learning-based data augmentation to automate the preprocessing process. It also provides functionality to evaluate image quality and select appropriate patches.
Conclusions
In conclusion, HistoMate provides an automated preprocessing tool for pathological image-based research, accelerating digital pathology-based research.
Clinical trial identification
Editorial acknowledgement
This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean Government (MSIT) (grant no. NRF-2021R1C1C1013706), and research fund by Seoul National University Bundang Hospital (grant no. 14-2018-0013).
Legal entity responsible for the study
The authors.
Funding
This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean Government (MSIT) (grant no. NRF-2021R1C1C1013706), and research fund by Seoul National University Bundang Hospital (grant no. 14-2018-0013).
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
1785P - Changes in bone mineral density, trabecular bone score and body composition in metastatic hormone-sensitive prostate cancer (mHSPC) patients randomized to receive androgen deprivation + enzalutamide plus/minus zoledronic acid: The BonEnza study
Presenter: Alberto Dalla Volta
Session: Poster session 14
1787P - Prostate specific membrane antigen positron emission tomography (PSMA PET)-directed clinical outcomes in metastatic hormone-sensitive prostate cancer (mHSPC): Implications for the STAMPEDE2 trial design
Presenter: Hoda Abdel-Aty
Session: Poster session 14
1789P - Low- and high-volume disease in mHSPC: From CHAARTED to PSMA PET
Presenter: Lena Unterrainer
Session: Poster session 14
1790P - Utilisation rates of treatment intensification for metastatic hormone sensitive prostate cancer (mHSPC) in England, UK
Presenter: Joanna Dodkins
Session: Poster session 14
1791P - Molecular profiling and prognostic relevance of low PTEN expression in metastatic hormone-sensitive prostate cancer patients
Presenter: Marta Garcia De Herreros
Session: Poster session 14
1792P - Effects of enzalutamide on overall survival +/- early docetaxel in participants aged less than 70 yrs versus greater than or equal to 70 yrs in ENZAMET (ANZUP 1304)
Presenter: Lisa Horvath
Session: Poster session 14
1793P - PPROSTRATEGY: A SOGUG randomized trial of androgen deprivation therapy (ADT) plus docetaxel (dct) +/- nivolumab (nivo) or ipilimumab-nivolumab (ipi-nivo) in high-volume metastatic hormone-sensitive prostate cancer (hvHSPCa) - Safety and toxicity profiles from the pilot phase
Presenter: Jose Arranz Arija
Session: Poster session 14