Abstract 1220P
Background
Determination of programmed death-ligand (PD-L1) status in triple-negative breast cancer (BC) by immunohistochemical (IHC) assay represents has prognostic significance in association with immune checkpoint inhibitor (ICI) therapies. However, the evaluation of PD-L1 SP142 remains challenging for pathologists since the associated tumor microenvironment complicates the immune cell (IC) scoring. Moreover, PD-L1 distribution in tumor could also lead to a risk of inaccurate patient allocation for ICI. To accurately diagnose PD-L1 status as IC score, a computer-aided artificial intelligence (AI) system is required to precisely quantify PD-L1 expression in two-dimensional and three-dimensional (3D) pathological images.
Methods
In this study, we proposed a computer-aided AI system for digital images of IHC and 3D immunofluorescence (IF) assays. This system consisted of machine learning algorithms for tumor/IC recognition, infiltration identification, and PD-L1 expression detection. Tissue clearing technology with IF and confocal microscopy were utilized to detect the spatial distribution of PD-L1 in BC specimens.
Results
The designed computer-aided AI system was based on a tumor segmentation model with a >80% accuracy and an IC recognition model with a 90% accuracy. For the IHC digital pathology, the computer-aided AI system achieved a concordance rate of 83% in comparison with PD-L1 IC interpretation by experienced pathologists. For 3D digital images, the system achieved a concordance rate of 90% with traditional pathological diagnosis. This system could serve as an integrated plugin onto existing open-source platforms. Appling the system for 3D analysis, the spatial distribution of PD-L1 showed heterogeneity across different layers. Notably, 30% cases crossed the 1% cutoff along the 3D layers, which is related to admission of immunotherapy.
Conclusions
The computer-aided AI system could improve the PD-L1 diagnosis from IHC to 3D digital images, which provides accurate prognostic significance for precision medicine.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
The authors.
Funding
Has not received any funding.
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
1774P - PC-PEP, a comprehensive daily six-month home-based prostate cancer: Patient empowerment program improves quality of life, physical fitness, and urinary function outcomes among prostate cancer patients with localized disease - Secondary analyses of a randomized clinical trial
Presenter: Gabriela Ilie
Session: Poster session 14
1775P - A newly-developed deep-learning algorithm: NAFNet outperforms ResNet50 for predicting adverse pathology events and biochemical recurrence time using MRI from prostate cancer patients
Presenter: Zheng Liu
Session: Poster session 14
1776P - Body composition in adult life and prostate cancer (PCa) incidence and mortality: The PROCA-life study
Presenter: Martin Støyten
Session: Poster session 14
1777P - Enzalutamide (enza) monotherapy for the treatment (tx) of prostate cancer with high-risk biochemical recurrence (BCR): EMBARK secondary endpoints
Presenter: Ugo De Giorgi
Session: Poster session 14
1778P - Treatment (tx) of high-risk biochemically recurrent prostate cancer with enzalutamide (enza) in combination with leuprolide acetate (LA): Secondary endpoints from EMBARK
Presenter: Stephen Freedland
Session: Poster session 14
1779P - PSMA guided approach for bIoCHEmical relapse after prostatectomy-PSICHE trial
Presenter: Giulio Francolini
Session: Poster session 14
1780P - The health inequality impact of darolutamide for non-metastatic castration-resistant prostate cancer: A distributional cost-effectiveness analysis
Presenter: Jeroen Jansen
Session: Poster session 14
1782P - Prostate radiotherapy reduces long-term risk of obstructive uropathy in metastatic hormone sensitive prostate cancer (mHSPC): Results from the STAMPEDE M1|RT comparison
Presenter: Craig Jones
Session: Poster session 14
1783P - PROSTRATEGY: A SOGUG randomized trial of androgen deprivation therapy (ADT) plus docetaxel (dct) +/- nivolumab (nivo) or ipilimumab-nivolumab (ipi-nivo) in high-volume metastatic hormone-sensitive prostate cancer (hvHSPCa) - Efficacy results from the pilot phase
Presenter: Jose Arranz Arija
Session: Poster session 14