Abstract 1220P
Background
Determination of programmed death-ligand (PD-L1) status in triple-negative breast cancer (BC) by immunohistochemical (IHC) assay represents has prognostic significance in association with immune checkpoint inhibitor (ICI) therapies. However, the evaluation of PD-L1 SP142 remains challenging for pathologists since the associated tumor microenvironment complicates the immune cell (IC) scoring. Moreover, PD-L1 distribution in tumor could also lead to a risk of inaccurate patient allocation for ICI. To accurately diagnose PD-L1 status as IC score, a computer-aided artificial intelligence (AI) system is required to precisely quantify PD-L1 expression in two-dimensional and three-dimensional (3D) pathological images.
Methods
In this study, we proposed a computer-aided AI system for digital images of IHC and 3D immunofluorescence (IF) assays. This system consisted of machine learning algorithms for tumor/IC recognition, infiltration identification, and PD-L1 expression detection. Tissue clearing technology with IF and confocal microscopy were utilized to detect the spatial distribution of PD-L1 in BC specimens.
Results
The designed computer-aided AI system was based on a tumor segmentation model with a >80% accuracy and an IC recognition model with a 90% accuracy. For the IHC digital pathology, the computer-aided AI system achieved a concordance rate of 83% in comparison with PD-L1 IC interpretation by experienced pathologists. For 3D digital images, the system achieved a concordance rate of 90% with traditional pathological diagnosis. This system could serve as an integrated plugin onto existing open-source platforms. Appling the system for 3D analysis, the spatial distribution of PD-L1 showed heterogeneity across different layers. Notably, 30% cases crossed the 1% cutoff along the 3D layers, which is related to admission of immunotherapy.
Conclusions
The computer-aided AI system could improve the PD-L1 diagnosis from IHC to 3D digital images, which provides accurate prognostic significance for precision medicine.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
The authors.
Funding
Has not received any funding.
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
1219P - Artificial intelligence-based breast cancer detection facilitates automated prognosis marker assessment using multiplex fluorescence immunohistochemistry
Presenter: Tim Mandelkow
Session: Poster session 14
1221P - The functional domain of BRCA1/2 pathogenic variants (PVs) as potential biomarkers of second tumor and domain-related sensitivity to PARP-inhibitors
Presenter: Lorena Incorvaia
Session: Poster session 14
1222P - Detection of androgen-receptor splice variant 7 messenger RNA in circulating tumor cells of prostate cancer by in vitro assay
Presenter: Hoin Kang
Session: Poster session 14
1223P - Homologous recombination deficiency (HRD) testing on ovarian cancer ascites: A feasibility study
Presenter: Alberto Ranghiero
Session: Poster session 14
1224P - Detection of circulating tumor DNA (ctDNA) in untreated patients (pts) with cancer: Implications for early cancer detection (ECD)
Presenter: Yoshiaki Nakamura
Session: Poster session 14
1225P - Combining ctDNA and tissue-based-genomic profiling in advanced cancer: A real-world evidence prospective study in non-Western patients treated at Gustave Roussy cancer campus
Presenter: Tony Ibrahim
Session: Poster session 14
1226P - Multi-site validation of a deep learning solution for HER2 profiling of breast cancer from H&E-stained pathology slides
Presenter: Salim Arslan
Session: Poster session 14
1227P - Novel in vivo photonics-immunoassay system, inPROBE, for the rapid detection of HER2 in breast cancer
Presenter: Magdalena Staniszewska
Session: Poster session 14
1228P - A circulating tumor cell (CTC) based assay for diagnostic immunocytochemistry profiling of lung cancer
Presenter: Nitesh Rohatgi
Session: Poster session 14
1229P - Selective phenotypic and genotypic evaluation of circulating glial cells for improved diagnosis of glial malignancies
Presenter: Sewanti Limaye
Session: Poster session 14