Abstract 1220P
Background
Determination of programmed death-ligand (PD-L1) status in triple-negative breast cancer (BC) by immunohistochemical (IHC) assay represents has prognostic significance in association with immune checkpoint inhibitor (ICI) therapies. However, the evaluation of PD-L1 SP142 remains challenging for pathologists since the associated tumor microenvironment complicates the immune cell (IC) scoring. Moreover, PD-L1 distribution in tumor could also lead to a risk of inaccurate patient allocation for ICI. To accurately diagnose PD-L1 status as IC score, a computer-aided artificial intelligence (AI) system is required to precisely quantify PD-L1 expression in two-dimensional and three-dimensional (3D) pathological images.
Methods
In this study, we proposed a computer-aided AI system for digital images of IHC and 3D immunofluorescence (IF) assays. This system consisted of machine learning algorithms for tumor/IC recognition, infiltration identification, and PD-L1 expression detection. Tissue clearing technology with IF and confocal microscopy were utilized to detect the spatial distribution of PD-L1 in BC specimens.
Results
The designed computer-aided AI system was based on a tumor segmentation model with a >80% accuracy and an IC recognition model with a 90% accuracy. For the IHC digital pathology, the computer-aided AI system achieved a concordance rate of 83% in comparison with PD-L1 IC interpretation by experienced pathologists. For 3D digital images, the system achieved a concordance rate of 90% with traditional pathological diagnosis. This system could serve as an integrated plugin onto existing open-source platforms. Appling the system for 3D analysis, the spatial distribution of PD-L1 showed heterogeneity across different layers. Notably, 30% cases crossed the 1% cutoff along the 3D layers, which is related to admission of immunotherapy.
Conclusions
The computer-aided AI system could improve the PD-L1 diagnosis from IHC to 3D digital images, which provides accurate prognostic significance for precision medicine.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
The authors.
Funding
Has not received any funding.
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
1251P - Development of a deep learning algorithm for lung cancer diagnosis using methylation and fragment size profiles of cfDNA
Presenter: Jiyoung Huh
Session: Poster session 14
1252P - Quantitative cell signaling activity profiling of solid tumors to support personalized treatment in the FINPROVE basket trial: Presentation of skin tumor data
Presenter: Diederick Keizer
Session: Poster session 14
1253P - Analytic validation and implementation of OncoDEEP: A pan-cancer comprehensive genomic profiling NGS assay for assessing homologous recombination deficiency (HRD)
Presenter: Marcel Trautmann
Session: Poster session 14
1254P - Retrospective analysis of brain OMX: Diagnostic tool for structural (T1) and functional connectome (RS-FMRI) analysis of brain
Presenter: Swarnambiga Ayyachamy
Session: Poster session 14
1255P - Evaluating GPT-4 as an academic support tool for clinicians: A comparative analysis of case records from the literature
Presenter: Marcos Aurelio Fonseca Magalhaes Filho
Session: Poster session 14
1256P - Value of detection of peripheral blood circRNA based on digital PCR in the diagnosis of lung adenocarcinoma
Presenter: Jihong Zhou
Session: Poster session 14
1257P - Double heterozygous prevalence in hereditary cancer syndromes in Northern Mexico population
Presenter: Carlos Burciaga Flores
Session: Poster session 14
1258P - Does FDG PET-based radiomics have an added value for prediction of overall survival in non-small cell lung cancer?
Presenter: Andrea Ciarmiello
Session: Poster session 14
1260TiP - Enhancing lung nodule discrimination with a novel cfDNA test: The cancer signature ensemble (CSE) approach
Presenter: Young-Chul Kim
Session: Poster session 14
1773P - ICECaP-2: Validation of metastasis-free survival (MFS) as a surrogate for overall survival (OS) in localized prostate cancer (LPC) in a more contemporary era
Presenter: Wanling Xie
Session: Poster session 14