Abstract 1220P
Background
Determination of programmed death-ligand (PD-L1) status in triple-negative breast cancer (BC) by immunohistochemical (IHC) assay represents has prognostic significance in association with immune checkpoint inhibitor (ICI) therapies. However, the evaluation of PD-L1 SP142 remains challenging for pathologists since the associated tumor microenvironment complicates the immune cell (IC) scoring. Moreover, PD-L1 distribution in tumor could also lead to a risk of inaccurate patient allocation for ICI. To accurately diagnose PD-L1 status as IC score, a computer-aided artificial intelligence (AI) system is required to precisely quantify PD-L1 expression in two-dimensional and three-dimensional (3D) pathological images.
Methods
In this study, we proposed a computer-aided AI system for digital images of IHC and 3D immunofluorescence (IF) assays. This system consisted of machine learning algorithms for tumor/IC recognition, infiltration identification, and PD-L1 expression detection. Tissue clearing technology with IF and confocal microscopy were utilized to detect the spatial distribution of PD-L1 in BC specimens.
Results
The designed computer-aided AI system was based on a tumor segmentation model with a >80% accuracy and an IC recognition model with a 90% accuracy. For the IHC digital pathology, the computer-aided AI system achieved a concordance rate of 83% in comparison with PD-L1 IC interpretation by experienced pathologists. For 3D digital images, the system achieved a concordance rate of 90% with traditional pathological diagnosis. This system could serve as an integrated plugin onto existing open-source platforms. Appling the system for 3D analysis, the spatial distribution of PD-L1 showed heterogeneity across different layers. Notably, 30% cases crossed the 1% cutoff along the 3D layers, which is related to admission of immunotherapy.
Conclusions
The computer-aided AI system could improve the PD-L1 diagnosis from IHC to 3D digital images, which provides accurate prognostic significance for precision medicine.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
The authors.
Funding
Has not received any funding.
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
1816P - Combination treatment with radium-223 (223Ra) and enzalutamide (enza) in patients (pts) with metastatic castration-resistant prostate cancer (mCRPC) in the REASSURE study
Presenter: Bertrand Tombal
Session: Poster session 14
1817P - A phase I/II efficacy and safety study of LAE001/prednisone and afuresertib in patients with metastatic castration-resistant prostate cancer (mCRPC) following 1-3 lines of standard of care
Presenter: Elan Diamond
Session: Poster session 14
1818P - Final results from a randomized phase II study of cabazitaxel (CBZ) versus an androgen receptor targeted agent (ARTA) in patients with poor-prognosis castration-resistant prostate cancer (mCRPC)
Presenter: Kim van der Zande
Session: Poster session 14
1819P - PSMA-BAT: Prospective biomarker trial of patients (pts) with metastatic castration-resistant prostate cancer (mCRPC) undergoing bipolar androgen therapy (BAT)
Presenter: Aline Lara Gongora
Session: Poster session 14