Oops, you're using an old version of your browser so some of the features on this page may not be displaying properly.

MINIMAL Requirements: Google Chrome 24+Mozilla Firefox 20+Internet Explorer 11Opera 15–18Apple Safari 7SeaMonkey 2.15-2.23

Poster session 08

2255P - Clinicogenomic landscapes and hallmarks of KRAS amplification in human cancers

Date

21 Oct 2023

Session

Poster session 08

Topics

Translational Research

Tumour Site

Presenters

Biagio Ricciuti

Citation

Annals of Oncology (2023) 34 (suppl_2): S1152-S1189. 10.1016/S0923-7534(23)01927-0

Authors

B. Ricciuti1, J.V. Alessi2, X. Wang3, F. Pecci4, A. Di Federico5, M. Gandhi1, M. Makarem4, L. Sholl6, P.A. Jänne1, C. Ambrogio7, M.M. Awad8

Author affiliations

  • 1 Lowe Center For Thoracic Oncology, Dana Farber Cancer Institute, 02215 - Boston/US
  • 2 Thoracic, Dana Farber Cancer Institute, 02215 - Boston/US
  • 3 Statistics, Harvard School of Public Health, 02215 - Boston/US
  • 4 Thoracic Oncology, Dana Farber Cancer Institute, 02215 - Boston/US
  • 5 Lowe Center For Thoracic Oncology, Dana-Farber Cancer Institute, Harvard Medical School, 02215 - Boston/US
  • 6 Pathology, Brigham and Women's Hospital, 02215 - BOSTON/US
  • 7 Department Of Molecular Biotechnology And Health Sciences, Università degli Studi di Torino - Centro Interdipartimentale di Ricerca per le Biotecnologie Molecolari, 10126 - Torino/IT
  • 8 Medical Oncology, Dana Farber Cancer Institute, 02215 - Boston/US

Resources

Login to get immediate access to this content.

If you do not have an ESMO account, please create one for free.

Abstract 2255P

Background

The recent development of direct KRAS inhibitors has changed the treatment landscape of patients (pts) with oncogenic KRAS mutations. However, whether KRAS amplification (KRASAMP) also defines a unique subset of cancers and represents a potential target for drug development is unknown.

Methods

Clinicogenomic data and outcomes were abstracted from independent cohorts of human cancers with genomic profiling at the Dana-Farber Cancer Institute, AACR-GENIE v.13, The Cancer Genome Atlas (TCGA), and 212 other studies, and examined according to KRASAMP status. We also correlated KRASAMP with KRAS RNA and protein expression using whole transcriptome and proteomics data from the TCGA and the Cancer Cell Lines Encyclopedia.

Results

Among 103,523 pts with solid and hematologic cancers, KRASAMP was identified in 1,744 (1.7%) of cases. KRASAMP was most prevalent in germ cell tumors (16.3%), esophagogastric (7.5%), ovarian (4.2%), pancreatic (2.2%), breast (2%), colorectal (CRC, 1.2%), and non-small cell lung cancer (NSCLC, 1.2%). Among these pts, median age was 61, 61.5% were ever smokers, 85.4% were white, and 71.8% had poorly differentiated cancers. Compared to KRAS diploid cases, KRASAMP cancers had a higher fraction of the genome altered (p<0.01). Microsatellite instability scores were also higher in KRASAMP tumors from patients with breast, esophagogastric, germ cell, pancreatic and NSCLC (p<0.01), but not in CRC (p=0.22). Tumor mutational burden was higher (p<0.01) among CRC, NSCLC, and esophagogastric cancers with KRASAMP vs KRAS diploid. Compared to KRAS diploid samples, KRASAMP samples had increased KRAS mRNA (p<0.01) and protein expression (p<0.01). Among pts with clinical outcome data (N=41,900), median overall survival (OS) was shorter in all comers with KRASAMP vs KRAS diploid genotype (adjusted HR 1.68, p<0.01), and in each cancer type analyzed separately. KRASAMP conferred worse survival outcomes in pts with both KRAS wild-type (N=35,599, adjusted HR 1.38, p=0.01) and KRAS-mutant (N=6,301, adjusted HR 1.70, p<0.01) cancers.

Conclusions

KRAS amplification defines a novel subset of human cancers characterized by distinct genomic features, and worse survival. Novel therapeutic strategies to target KRASAMP may improve outcomes in pts with cancer.

Clinical trial identification

Editorial acknowledgement

Legal entity responsible for the study

Biagio Ricciuti.

Funding

Has not received any funding.

Disclosure

B. Ricciuti: Financial Interests, Personal, Advisory Board: Regeneron. P.A. Jänne: Financial Interests, Personal, Advisory Board, Consulting fees for advice on drug development: AstraZeneca, Boehringer Ingelheim, Pfizer, Roche/Genentech, Chugai Pharmaceuticals, Eli Lilly, Voronoi, Daiichi Sankyo, Novartis, Sanofi, Takeda Oncology, Mirati Therapeutics, Trasncenta, Silicon Therapeutics, Syndax, Nuvalent, Bayer, Eisai, Allorion Therapeutics, Accutar Biotech, AbbVie, Duality Biologics; Financial Interests, Personal, Advisory Board, Consulting fees for advice on diagnostic development: Biocartis; Financial Interests, Personal, Advisory Board, Consulting fee for advice on drug development: Merus, Frontier Medicines; Financial Interests, Personal, Advisory Board, Consulting fees for advice on drug development: Hongyun Biotechnology; Financial Interests, Personal, Stocks/Shares: Gatekeeper Pharmaceuticals, Allorion Therapeutics; Financial Interests, Personal, Royalties, I receive post-marketing royalties from being an inventor on a DFCI owned patent on EGFR mutations licensed to Lab Corp: Lab Corp; Financial Interests, Institutional, Research Grant, Sponsored research agreement with my institution: AstraZeneca, Daiichi Sankyo, PUMA, Eli Lilly, Boehringer Ingelheim, Revolution Medicines, Takeda Oncology. M.M. Awad: Financial Interests, Personal, Advisory Board: Merk, BMS, AZ, Genentech, Nekter, Maverick, Blueprint Medicine, AbbVie, Gritstone, ArcherDX, Mirati; Financial Interests, Advisory Board: NextCure. All other authors have declared no conflicts of interest.

This site uses cookies. Some of these cookies are essential, while others help us improve your experience by providing insights into how the site is being used.

For more detailed information on the cookies we use, please check our Privacy Policy.

Customise settings
  • Necessary cookies enable core functionality. The website cannot function properly without these cookies, and you can only disable them by changing your browser preferences.