Abstract 1250P
Background
We conducted a retrospective analysis to evaluate the volume of the lungs and determine the presence of infiltration and consolidation. To accurately interpret anisotropies and voxel spacings and to maintain resilience even when dealing with unbalanced class distributions, we used nnU-Net with quantitative and qualitative assessments to detect Lung infiltration. Utilizing TCGA-LUAD data (Lung Adenocarcinoma) and TCGA-LUSC (Lung Squamous cell carcinoma) this retrospective study on segmentation for volumetric and consolidation assessments are conducted. Chest OMX is a diagnostic tool that can assess lung volume, which in turn enables various applications such as monitoring recurrence from the changes in Lung volume; identifying infiltration and response to the treatment from Lung Volume and lobes, and detecting abnormalities in the lung from Consolidation. By providing quantitative score values, it assists in tracking changes over time and facilitating decision-making in clinical diagnosis.
Methods
We used nnU-Net, a popular deep-learning framework designed for medical image segmentation tasks. By analyzing the volume, infiltration, and consolidation characteristics of a lung carcinoma on CT scans, we can assess the tumor's behavior and response to treatment. From regional lung segmentation invasion, the burden is calculated. Additionally, measurements of discovered lung lesions and dedication to the relevant lung lobe are performed, along with fully automated lung lobe segmentation. Lobe 3D uses a deep learning system to measure the volume of the five lobes of the lung. HAA is also analyzed towards the end. Patient cases are selected irrespective of their ages from the TCGA cohort group. The primary outcome was the assessment of lung volume and the extent of the infiltration.
Results
Table: 1250P
Chest OMX: Generated diagnosis report for the case TCGA-LUSC
Left lung (LL) cm3 | 1429.50 |
Right lung (RL) cm3 | 1516.38 |
Left upper lobe (LUL) cm3 | 807.24 |
Left lower lobe (LLL) cm3 | 603.17 |
Right upper lobe (RUL) cm3 | 618.34 |
Right middle lobe (RML) cm3 | 276.84 |
Right lower lobe (RLL) cm3 | 611.89 |
Left upper lobe (HAA) cm3 | 170.16 |
Left lower lobe (HAA) cm3 | 378.00 |
Right upper lobe (HAA) cm3 | 128.18 |
Right middle lobe (HAA) cm3 | 59.05 |
Right lower lobe (HAA) cm3 | 394.12 |
Volume (LUL, LLL, RUL, RML, RLL) cm3 | (807.24, 603.17, 618.34, 276.84, 611.89) |
Involvement (LUL, LLL, RUL, RML, RLL) cm3 | (378.00, 128.18, 59.05, 394.12) |
Infiltration percentage (LUL, LLL, RUL, RML, RLL) % | (21.08, 62.67, 20.73, 21.33, 64.41) |
Conclusions
The diagnostic tool, Chest OMX can analyze the lung tissue from CT scans to determine the volume, consolidation and extent of infiltration by cancerous cells.
Clinical trial identification
Editorial acknowledgement
The dataset acknowledgment for,
1.Albertina, B., Watson, M., Holback, C., Jarosz, R., Kirk, S., Lee, Y., Rieger-Christ, K., & Lemmerman, J. (2016). The Cancer Genome Atlas Lung Adenocarcinoma Collection (TCGA-LUAD) (Version 4) [Data set]. The Cancer Imaging Archive. https://doi.org/10.7937/K9/TCIA.2016.JGNIHEP5.[Data Citation]
2. Clark, K., Vendt, B., Smith, K., Freymann, J., Kirby, J., Koppel, P., Moore, S., Phillips, S., Maffitt, D., Pringle, M., Tarbox, L., & Prior, F. (2013). The Cancer Imaging Archive (TCIA): Maintaining and Operating a Public Information Repository. In Journal of Digital Imaging (Vol. 26, Issue 6, pp. 1045–1057). Springer Science and Business Media LLC. \https://doi.org/10.1007/s10278-013-9622-7.[TCIA Citation]
3.Kirk, S., Lee, Y., Kumar, P., Filippini, J., Albertina, B., Watson, M., Rieger-Christ, K., & Lemmerman, J. (2016). The Cancer Genome Atlas Lung Squamous Cell Carcinoma Collection (TCGA-LUSC) (Version 4) [Data set]. The Cancer Imaging Archive. \https://doi.org/10.7937/K9/TCIA.2016.TYGKKFMQ.[Data Citation]
Legal entity responsible for the study
PMX.Inc., USA and PMX, South Korea.
Funding
Has not received any funding.
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
1203P - Role of tumor markers before or during chemotherapy for poorly differentiated neuroendocrine carcinomas of the digestive system: An exploratory analysis of JCOG1213
Presenter: Tomoyuki Satake
Session: Poster session 14
1204TiP - Iadademstat in combination with paclitaxel in relapsed/refractory small cell lung carcinoma (SCLC) and extrapulmonary high grade neuroendocrine carcinoma (NEC)
Presenter: Neel Belani
Session: Poster session 14
1212P - Predictive value of a near-term prediction model for severe irAEs in cancer treatment with ICIs
Presenter: Jun Zhao
Session: Poster session 14
1213P - HRD complete: A novel NGS assay for detecting homologous recombination repair (HRR) gene alterations in prostate cancer
Presenter: Xin Ye
Session: Poster session 14
1214P - A novel machine learning based method to detect homozygous deletion of homologous recombination repair (HRR) genes in prostate cancer
Presenter: Jianqing Wang
Session: Poster session 14
1215P - Comparative analysis of cfDNA liquid biopsy and tumor-based next-generation sequencing (NGS) approaches
Presenter: Anastasiya Yudina
Session: Poster session 14
1216P - A spectroscopic liquid biopsy for the earlier detection of multiple cancer types
Presenter: Matthew Baker
Session: Poster session 14
1217P - Clinical evaluation of a CE-IVD liquid biopsy pan cancer genomic profiling test
Presenter: Timothy Crook
Session: Poster session 14
1218P - Exploring cancer care pathways in seven European countries: Identifying obstacles and opportunities for the role of artificial intelligence
Presenter: Shereen Nabhani
Session: Poster session 14