Abstract 1250P
Background
We conducted a retrospective analysis to evaluate the volume of the lungs and determine the presence of infiltration and consolidation. To accurately interpret anisotropies and voxel spacings and to maintain resilience even when dealing with unbalanced class distributions, we used nnU-Net with quantitative and qualitative assessments to detect Lung infiltration. Utilizing TCGA-LUAD data (Lung Adenocarcinoma) and TCGA-LUSC (Lung Squamous cell carcinoma) this retrospective study on segmentation for volumetric and consolidation assessments are conducted. Chest OMX is a diagnostic tool that can assess lung volume, which in turn enables various applications such as monitoring recurrence from the changes in Lung volume; identifying infiltration and response to the treatment from Lung Volume and lobes, and detecting abnormalities in the lung from Consolidation. By providing quantitative score values, it assists in tracking changes over time and facilitating decision-making in clinical diagnosis.
Methods
We used nnU-Net, a popular deep-learning framework designed for medical image segmentation tasks. By analyzing the volume, infiltration, and consolidation characteristics of a lung carcinoma on CT scans, we can assess the tumor's behavior and response to treatment. From regional lung segmentation invasion, the burden is calculated. Additionally, measurements of discovered lung lesions and dedication to the relevant lung lobe are performed, along with fully automated lung lobe segmentation. Lobe 3D uses a deep learning system to measure the volume of the five lobes of the lung. HAA is also analyzed towards the end. Patient cases are selected irrespective of their ages from the TCGA cohort group. The primary outcome was the assessment of lung volume and the extent of the infiltration.
Results
Table: 1250P
Chest OMX: Generated diagnosis report for the case TCGA-LUSC
Left lung (LL) cm3 | 1429.50 |
Right lung (RL) cm3 | 1516.38 |
Left upper lobe (LUL) cm3 | 807.24 |
Left lower lobe (LLL) cm3 | 603.17 |
Right upper lobe (RUL) cm3 | 618.34 |
Right middle lobe (RML) cm3 | 276.84 |
Right lower lobe (RLL) cm3 | 611.89 |
Left upper lobe (HAA) cm3 | 170.16 |
Left lower lobe (HAA) cm3 | 378.00 |
Right upper lobe (HAA) cm3 | 128.18 |
Right middle lobe (HAA) cm3 | 59.05 |
Right lower lobe (HAA) cm3 | 394.12 |
Volume (LUL, LLL, RUL, RML, RLL) cm3 | (807.24, 603.17, 618.34, 276.84, 611.89) |
Involvement (LUL, LLL, RUL, RML, RLL) cm3 | (378.00, 128.18, 59.05, 394.12) |
Infiltration percentage (LUL, LLL, RUL, RML, RLL) % | (21.08, 62.67, 20.73, 21.33, 64.41) |
Conclusions
The diagnostic tool, Chest OMX can analyze the lung tissue from CT scans to determine the volume, consolidation and extent of infiltration by cancerous cells.
Clinical trial identification
Editorial acknowledgement
The dataset acknowledgment for,
1.Albertina, B., Watson, M., Holback, C., Jarosz, R., Kirk, S., Lee, Y., Rieger-Christ, K., & Lemmerman, J. (2016). The Cancer Genome Atlas Lung Adenocarcinoma Collection (TCGA-LUAD) (Version 4) [Data set]. The Cancer Imaging Archive. https://doi.org/10.7937/K9/TCIA.2016.JGNIHEP5.[Data Citation]
2. Clark, K., Vendt, B., Smith, K., Freymann, J., Kirby, J., Koppel, P., Moore, S., Phillips, S., Maffitt, D., Pringle, M., Tarbox, L., & Prior, F. (2013). The Cancer Imaging Archive (TCIA): Maintaining and Operating a Public Information Repository. In Journal of Digital Imaging (Vol. 26, Issue 6, pp. 1045–1057). Springer Science and Business Media LLC. \https://doi.org/10.1007/s10278-013-9622-7.[TCIA Citation]
3.Kirk, S., Lee, Y., Kumar, P., Filippini, J., Albertina, B., Watson, M., Rieger-Christ, K., & Lemmerman, J. (2016). The Cancer Genome Atlas Lung Squamous Cell Carcinoma Collection (TCGA-LUSC) (Version 4) [Data set]. The Cancer Imaging Archive. \https://doi.org/10.7937/K9/TCIA.2016.TYGKKFMQ.[Data Citation]
Legal entity responsible for the study
PMX.Inc., USA and PMX, South Korea.
Funding
Has not received any funding.
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
1251P - Development of a deep learning algorithm for lung cancer diagnosis using methylation and fragment size profiles of cfDNA
Presenter: Jiyoung Huh
Session: Poster session 14
1252P - Quantitative cell signaling activity profiling of solid tumors to support personalized treatment in the FINPROVE basket trial: Presentation of skin tumor data
Presenter: Diederick Keizer
Session: Poster session 14
1253P - Analytic validation and implementation of OncoDEEP: A pan-cancer comprehensive genomic profiling NGS assay for assessing homologous recombination deficiency (HRD)
Presenter: Marcel Trautmann
Session: Poster session 14
1254P - Retrospective analysis of brain OMX: Diagnostic tool for structural (T1) and functional connectome (RS-FMRI) analysis of brain
Presenter: Swarnambiga Ayyachamy
Session: Poster session 14
1255P - Evaluating GPT-4 as an academic support tool for clinicians: A comparative analysis of case records from the literature
Presenter: Marcos Aurelio Fonseca Magalhaes Filho
Session: Poster session 14
1256P - Value of detection of peripheral blood circRNA based on digital PCR in the diagnosis of lung adenocarcinoma
Presenter: Jihong Zhou
Session: Poster session 14
1257P - Double heterozygous prevalence in hereditary cancer syndromes in Northern Mexico population
Presenter: Carlos Burciaga Flores
Session: Poster session 14
1258P - Does FDG PET-based radiomics have an added value for prediction of overall survival in non-small cell lung cancer?
Presenter: Andrea Ciarmiello
Session: Poster session 14
1260TiP - Enhancing lung nodule discrimination with a novel cfDNA test: The cancer signature ensemble (CSE) approach
Presenter: Young-Chul Kim
Session: Poster session 14
1773P - ICECaP-2: Validation of metastasis-free survival (MFS) as a surrogate for overall survival (OS) in localized prostate cancer (LPC) in a more contemporary era
Presenter: Wanling Xie
Session: Poster session 14