Abstract 1250P
Background
We conducted a retrospective analysis to evaluate the volume of the lungs and determine the presence of infiltration and consolidation. To accurately interpret anisotropies and voxel spacings and to maintain resilience even when dealing with unbalanced class distributions, we used nnU-Net with quantitative and qualitative assessments to detect Lung infiltration. Utilizing TCGA-LUAD data (Lung Adenocarcinoma) and TCGA-LUSC (Lung Squamous cell carcinoma) this retrospective study on segmentation for volumetric and consolidation assessments are conducted. Chest OMX is a diagnostic tool that can assess lung volume, which in turn enables various applications such as monitoring recurrence from the changes in Lung volume; identifying infiltration and response to the treatment from Lung Volume and lobes, and detecting abnormalities in the lung from Consolidation. By providing quantitative score values, it assists in tracking changes over time and facilitating decision-making in clinical diagnosis.
Methods
We used nnU-Net, a popular deep-learning framework designed for medical image segmentation tasks. By analyzing the volume, infiltration, and consolidation characteristics of a lung carcinoma on CT scans, we can assess the tumor's behavior and response to treatment. From regional lung segmentation invasion, the burden is calculated. Additionally, measurements of discovered lung lesions and dedication to the relevant lung lobe are performed, along with fully automated lung lobe segmentation. Lobe 3D uses a deep learning system to measure the volume of the five lobes of the lung. HAA is also analyzed towards the end. Patient cases are selected irrespective of their ages from the TCGA cohort group. The primary outcome was the assessment of lung volume and the extent of the infiltration.
Results
Table: 1250P
Chest OMX: Generated diagnosis report for the case TCGA-LUSC
Left lung (LL) cm3 | 1429.50 |
Right lung (RL) cm3 | 1516.38 |
Left upper lobe (LUL) cm3 | 807.24 |
Left lower lobe (LLL) cm3 | 603.17 |
Right upper lobe (RUL) cm3 | 618.34 |
Right middle lobe (RML) cm3 | 276.84 |
Right lower lobe (RLL) cm3 | 611.89 |
Left upper lobe (HAA) cm3 | 170.16 |
Left lower lobe (HAA) cm3 | 378.00 |
Right upper lobe (HAA) cm3 | 128.18 |
Right middle lobe (HAA) cm3 | 59.05 |
Right lower lobe (HAA) cm3 | 394.12 |
Volume (LUL, LLL, RUL, RML, RLL) cm3 | (807.24, 603.17, 618.34, 276.84, 611.89) |
Involvement (LUL, LLL, RUL, RML, RLL) cm3 | (378.00, 128.18, 59.05, 394.12) |
Infiltration percentage (LUL, LLL, RUL, RML, RLL) % | (21.08, 62.67, 20.73, 21.33, 64.41) |
Conclusions
The diagnostic tool, Chest OMX can analyze the lung tissue from CT scans to determine the volume, consolidation and extent of infiltration by cancerous cells.
Clinical trial identification
Editorial acknowledgement
The dataset acknowledgment for,
1.Albertina, B., Watson, M., Holback, C., Jarosz, R., Kirk, S., Lee, Y., Rieger-Christ, K., & Lemmerman, J. (2016). The Cancer Genome Atlas Lung Adenocarcinoma Collection (TCGA-LUAD) (Version 4) [Data set]. The Cancer Imaging Archive. https://doi.org/10.7937/K9/TCIA.2016.JGNIHEP5.[Data Citation]
2. Clark, K., Vendt, B., Smith, K., Freymann, J., Kirby, J., Koppel, P., Moore, S., Phillips, S., Maffitt, D., Pringle, M., Tarbox, L., & Prior, F. (2013). The Cancer Imaging Archive (TCIA): Maintaining and Operating a Public Information Repository. In Journal of Digital Imaging (Vol. 26, Issue 6, pp. 1045–1057). Springer Science and Business Media LLC. \https://doi.org/10.1007/s10278-013-9622-7.[TCIA Citation]
3.Kirk, S., Lee, Y., Kumar, P., Filippini, J., Albertina, B., Watson, M., Rieger-Christ, K., & Lemmerman, J. (2016). The Cancer Genome Atlas Lung Squamous Cell Carcinoma Collection (TCGA-LUSC) (Version 4) [Data set]. The Cancer Imaging Archive. \https://doi.org/10.7937/K9/TCIA.2016.TYGKKFMQ.[Data Citation]
Legal entity responsible for the study
PMX.Inc., USA and PMX, South Korea.
Funding
Has not received any funding.
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
1807P - Talazoparib (TALA) plus enzalutamide (ENZA) in metastatic castration-resistant prostate cancer (mCRPC): Subgroup analyses of the all-comers cohort from TALAPRO-2 by homologous recombination repair (HRR) status
Presenter: Nobuaki Matsubara
Session: Poster session 14
1808P - Pain response and health-related quality of life (HRQL) analysis in patients with metastatic castration-resistant prostate cancer (mCRPC) receiving cabazitaxel every 2 weeks (16 mg/m<sup>2</sup>) versus every 3 weeks (25 mg/m<sup>2</sup>) in the CABASTY phase III trial
Presenter: Stephane Oudard
Session: Poster session 14
1809P - Dynamics of plasma tumour DNA and copy number alterations in advanced metastatic castration-resistant prostate cancer (mCRPC) patients treated with cabazitaxel: A prospective biomarker trial
Presenter: Nicole Brighi
Session: Poster session 14
1810P - Association of health-related quality of life with efficacy outcomes in the VISION study of patients with metastatic castration-resistant prostate cancer
Presenter: Michael Morris
Session: Poster session 14
1811P - Patient-reported outcomes (PROs) in men with metastatic castration-resistant prostate cancer (mCRPC) and homologous recombination repair (HRR) mutations receiving talazoparib (TALA) + enzalutamide (ENZA) vs placebo (PBO) + ENZA: Results from a phase III (TALAPRO-2) study
Presenter: Andre Fay
Session: Poster session 14
1813P - Phase I/II trial of oral EPI-7386 in combination with enzalutamide (enz) compared to enz alone in metastatic castration-resistant prostate cancer (mCRPC) subjects: Current phase I (PI) results
Presenter: Andrew Laccetti
Session: Poster session 14
1814P - First real-life data on [177Lu]Lu-PSMA-617: Descriptive analysis on the largest metastatic castration-resistant prostate cancer (mCRPC) cohort treated in early access in France
Presenter: Anne-Laure Giraudet
Session: Poster session 14
1815P - Emergent circulating tumor DNA (ctDNA) variants and ctDNA burden dynamics with potential associations with talazoparib antitumor activity in TALAPRO-1
Presenter: Elena Castro
Session: Poster session 14