Abstract 1797P
Background
Biochemical recurrence is estimated to occur in ≥ 25% of patients with prostate cancer (PC) following primary curative therapy. Machine learning models are being developed for lesion detection and tracking to provide a comprehensive view of disease burden, allowing clinicians to quantify and predict effectiveness of treatment for individual lesions. This study applied novel AI-assisted technology to automatically extract features from [68Ga] Ga-PSMA-11 (PSMA) PET/CT images that correlate with treatment intervention and survival data to create a scoring system.
Methods
Between 2015 and 2016, 185 men with oligometastatic PC had a baseline and follow-up PSMA PET/CT scan (at ∼6-months) whilst treated per standard clinical care. Lesions were quantified and matched between timepoints using AIQ Solutions technology. Imaging features were extracted from each patient, including change in basic features (SUVmax, SUVmean, and number of lesions at baseline), and heterogeneity features (intrapatient heterogeneity of disease and response). Univariate predictive power of overall survival (OS) prediction of each measure was determined using Cox regression models. An AI approach was evaluated to predict OS using 5-fold cross-validation of a random survival forest. Model performance was evaluated using the c-index.
Results
The top univariate predictors of survival were all heterogeneity features, proportion of lesions increasing (c-index=0.62), number of stable lesions (0.62), number of decreasing lesions (0.60), and number of new lesions (0.59). In an individual scan, the proportion of increasing lesions >29% correlated with poorer progression. The AI model was able to predict responders vs suboptimal responders based on whether they had a treatment intervention or observation alone (35%) (c-index=0.83 in both cases).
Conclusions
This study demonstrates that an AI-assisted lesional response analysis can help predict response and prognosis of oligometastatic PC patients. These results support further studies to validate these findings in a prospective cohort.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
The authors.
Funding
Has not received any funding.
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
1229P - Selective phenotypic and genotypic evaluation of circulating glial cells for improved diagnosis of glial malignancies
Presenter: Sewanti Limaye
Session: Poster session 14
1230P - hPG80 (circulating progastrin) is a new blood-based biomarker for diagnosis of early-stage non-small cell lung cancers
Presenter: Paul Hofman
Session: Poster session 14
1231P - Machine learning prediction of the case-fatality of COVID-19 and risk factors for adverse outcomes in patients with non-small cell lung cancer
Presenter: Yeji Jung
Session: Poster session 14
1232P - Analytic analysis of PanSeer7, a targeted bisulfite sequencing assay for blood-based multi-cancer detection for cancer early detection and tissue-of-origin identification
Presenter: Xinrong Yang
Session: Poster session 14
1233P - Accurate prediction of gastrointestinal cancer tissue of origin using comprehensive plasma cell-free DNA fragmentomics features
Presenter: Xinrong Yang
Session: Poster session 14
1234P - HistoMate: Automated preprocessing software for digital histopathology image to enhance deep learning
Presenter: Jinok Lee
Session: Poster session 14
1235P - Enrichment of rare cancers in pragmatic precision cancer medicine trial: Experience from IMPRESS-Norway
Presenter: Aaslaug Helland
Session: Poster session 14
1236P - Feasibility of online symptom monitoring to detect lung cancer relapse in Poland
Presenter: Ewa Pawlowska
Session: Poster session 14
1237P - Design and validation of a custom next-generation sequencing panel in melanoma, glioma and gastrointestinal stromal tumor
Presenter: Xiaoyan Zhou
Session: Poster session 14
1238P - Detecting driver mutations by AmoyDx 11-gene PCR with high concordance with next-generation sequencing in Chinese non-small cell lung cancer patients
Presenter: Dongmei Lin
Session: Poster session 14