Abstract 1797P
Background
Biochemical recurrence is estimated to occur in ≥ 25% of patients with prostate cancer (PC) following primary curative therapy. Machine learning models are being developed for lesion detection and tracking to provide a comprehensive view of disease burden, allowing clinicians to quantify and predict effectiveness of treatment for individual lesions. This study applied novel AI-assisted technology to automatically extract features from [68Ga] Ga-PSMA-11 (PSMA) PET/CT images that correlate with treatment intervention and survival data to create a scoring system.
Methods
Between 2015 and 2016, 185 men with oligometastatic PC had a baseline and follow-up PSMA PET/CT scan (at ∼6-months) whilst treated per standard clinical care. Lesions were quantified and matched between timepoints using AIQ Solutions technology. Imaging features were extracted from each patient, including change in basic features (SUVmax, SUVmean, and number of lesions at baseline), and heterogeneity features (intrapatient heterogeneity of disease and response). Univariate predictive power of overall survival (OS) prediction of each measure was determined using Cox regression models. An AI approach was evaluated to predict OS using 5-fold cross-validation of a random survival forest. Model performance was evaluated using the c-index.
Results
The top univariate predictors of survival were all heterogeneity features, proportion of lesions increasing (c-index=0.62), number of stable lesions (0.62), number of decreasing lesions (0.60), and number of new lesions (0.59). In an individual scan, the proportion of increasing lesions >29% correlated with poorer progression. The AI model was able to predict responders vs suboptimal responders based on whether they had a treatment intervention or observation alone (35%) (c-index=0.83 in both cases).
Conclusions
This study demonstrates that an AI-assisted lesional response analysis can help predict response and prognosis of oligometastatic PC patients. These results support further studies to validate these findings in a prospective cohort.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
The authors.
Funding
Has not received any funding.
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
1773P - ICECaP-2: Validation of metastasis-free survival (MFS) as a surrogate for overall survival (OS) in localized prostate cancer (LPC) in a more contemporary era
Presenter: Wanling Xie
Session: Poster session 14
1774P - PC-PEP, a comprehensive daily six-month home-based prostate cancer: Patient empowerment program improves quality of life, physical fitness, and urinary function outcomes among prostate cancer patients with localized disease - Secondary analyses of a randomized clinical trial
Presenter: Gabriela Ilie
Session: Poster session 14
1775P - A newly-developed deep-learning algorithm: NAFNet outperforms ResNet50 for predicting adverse pathology events and biochemical recurrence time using MRI from prostate cancer patients
Presenter: Zheng Liu
Session: Poster session 14
1776P - Body composition in adult life and prostate cancer (PCa) incidence and mortality: The PROCA-life study
Presenter: Martin Støyten
Session: Poster session 14
1777P - Enzalutamide (enza) monotherapy for the treatment (tx) of prostate cancer with high-risk biochemical recurrence (BCR): EMBARK secondary endpoints
Presenter: Ugo De Giorgi
Session: Poster session 14
1778P - Treatment (tx) of high-risk biochemically recurrent prostate cancer with enzalutamide (enza) in combination with leuprolide acetate (LA): Secondary endpoints from EMBARK
Presenter: Stephen Freedland
Session: Poster session 14
1779P - PSMA guided approach for bIoCHEmical relapse after prostatectomy-PSICHE trial
Presenter: Giulio Francolini
Session: Poster session 14
1780P - The health inequality impact of darolutamide for non-metastatic castration-resistant prostate cancer: A distributional cost-effectiveness analysis
Presenter: Jeroen Jansen
Session: Poster session 14
1782P - Prostate radiotherapy reduces long-term risk of obstructive uropathy in metastatic hormone sensitive prostate cancer (mHSPC): Results from the STAMPEDE M1|RT comparison
Presenter: Craig Jones
Session: Poster session 14