Abstract 1797P
Background
Biochemical recurrence is estimated to occur in ≥ 25% of patients with prostate cancer (PC) following primary curative therapy. Machine learning models are being developed for lesion detection and tracking to provide a comprehensive view of disease burden, allowing clinicians to quantify and predict effectiveness of treatment for individual lesions. This study applied novel AI-assisted technology to automatically extract features from [68Ga] Ga-PSMA-11 (PSMA) PET/CT images that correlate with treatment intervention and survival data to create a scoring system.
Methods
Between 2015 and 2016, 185 men with oligometastatic PC had a baseline and follow-up PSMA PET/CT scan (at ∼6-months) whilst treated per standard clinical care. Lesions were quantified and matched between timepoints using AIQ Solutions technology. Imaging features were extracted from each patient, including change in basic features (SUVmax, SUVmean, and number of lesions at baseline), and heterogeneity features (intrapatient heterogeneity of disease and response). Univariate predictive power of overall survival (OS) prediction of each measure was determined using Cox regression models. An AI approach was evaluated to predict OS using 5-fold cross-validation of a random survival forest. Model performance was evaluated using the c-index.
Results
The top univariate predictors of survival were all heterogeneity features, proportion of lesions increasing (c-index=0.62), number of stable lesions (0.62), number of decreasing lesions (0.60), and number of new lesions (0.59). In an individual scan, the proportion of increasing lesions >29% correlated with poorer progression. The AI model was able to predict responders vs suboptimal responders based on whether they had a treatment intervention or observation alone (35%) (c-index=0.83 in both cases).
Conclusions
This study demonstrates that an AI-assisted lesional response analysis can help predict response and prognosis of oligometastatic PC patients. These results support further studies to validate these findings in a prospective cohort.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
The authors.
Funding
Has not received any funding.
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
1239P - NHS-Galleri trial enrolment approaches and participant sociodemographic diversity
Presenter: Charles Swanton
Session: Poster session 14
1241P - Decoding the glycan code: Pioneering early detection of non-small cell lung cancer through glycoproteomics
Presenter: Kai He
Session: Poster session 14
1242P - Implementing functional precision oncology in real-world patients: Translating extensive in vitro data into personalized treatment combining genetics and functional assays
Presenter: Dörthe Schaffrin-Nabe
Session: Poster session 14
1243P - Ocular surface squamous neoplasia early diagnosis using an AI-empowered autofluorescence multispectral imaging technique
Presenter: Abbas HABIBALAHI
Session: Poster session 14
1244P - AI-based accurate PD-L1 IHC assessment in non-small cell lung cancer across multiple sites and scanners
Presenter: Ramona Erber
Session: Poster session 14
1245P - A lymph nodal staging assessment model for various histologic types of small intestinal tumors
Presenter: YOUSHENG LI
Session: Poster session 14
1246P - Detection of alternative lengthening of telomeres (ALT) across cancer types based on tumor-normal multigene panel sequencing
Presenter: Juan Blanco Heredia
Session: Poster session 14
1247P - A detection model for EGFR mutations in lung adenocarcinoma patients based on volatile organic compounds
Presenter: Yunpeng Yang
Session: Poster session 14
1248P - Development of a high performance and noninvasive diagnostic model using blood cell-free microRNAs for multi-cancer early detection
Presenter: Jason Zhang
Session: Poster session 14
1249P - Whole genome sequencing-based cancer diagnostics in routine clinical practice: An interim analysis of two years of real-world data
Presenter: Jeffrey van Putten
Session: Poster session 14