Abstract 88P
Background
With lung remains the second common site of colon-rectal cancer metastasis, it is still a challenge for early detection and finding. Therefore, we evaluate the CT-based radiomics of indeterminate lung nodules, predicting lung metastasis and prognosis in locally advanced rectal cancer patients.
Methods
A retrospective review for lung metastatic patients with colon-rectal cancer (CRC) and chest CT images were conducted. Radiomic prediction model of lung metastasis was trained by 114 patients with pathologically verified lung metastasis and 122 patients with benign lung nodules. We investigate the value of radiomics for identifying lung metastasis in 174 locally advanced rectal cancer(LARC) patients with follow-up information. Then, we conducted a Cox model and Kaplan-Meier curve analysis based on radiomics risk scores, and compare them to a clinical-pathological model for prognostic prediction. We use LASSO and linear regression to generated the radiomics model. C-index was used to assess model performance.
Results
For lung metastatic nodule identification in CRC patient, the C-index was 0.794(95%CI 0.784 -0.803) in the training set and 0.752(95%CI 0.728-0.776) in the validation set. In LARC patients, the C-index for lung metastatic identification was 0.771(95%CI 0.763-0.780). For prognostic prediction in LARC patients, ypTNM stage had a great influence on prognosis(Log-rank test P=0.003), and the C-index was 0.695 (95%CI 0.638-0.752). The C-index for nodules was 0.663(95%CI 0.575-0.751) with HR=1.148 (95% 1.050-1.256, P=0.003), and P<0.001 for Log-rank test. The combination of the ypTNM stage and nodule radiomics information has the C-index of 0.757 (95%CI 0.692-0.822), with P<0.001 for Log-rank test, which increase the performance of clinical prognostic prediction(P= 0.044).
Conclusions
Radiomics for nodules can determine lung metastasis in LARC patients. Lung nodules radiomics can provide information for prognostic analysis. The combination of lung nodules radiomics and ypTNM information increases the performance of prognostic prediction in LARC patients.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
The authors.
Funding
Has not received any funding.
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
95P - Prognosis of Japanese patients with detailed RAS/BRAF mutant colorectal cancer
Presenter: Tatsuki Ikoma
Session: e-Poster Display Session
96P - Early-onset colorectal cancer prognosis, conflict resolution, review of literature and meta-analysis
Presenter: Ereny Poles
Session: e-Poster Display Session
97P - A population-based study to assess the associations of rural residence and low socioeconomic status (SES) with cardiovascular disease (CVD) in patients with colorectal cancer (CRC)
Presenter: Atul Batra
Session: e-Poster Display Session
98P - Operational challenges of an Asian Pacific (APAC) academic oncology clinical trial
Presenter: Daphne Day
Session: e-Poster Display Session
99P - Development of a qRT-PCR-based diagnostic test to identify colorectal cancer patients with recurrent R-Spondin gene fusions
Presenter: Veronica Diermayr
Session: e-Poster Display Session
100P - Individualized treatment of advanced digestive system tumour guided by PDTX mouse model: A multicenter trial
Presenter: yuan cheng
Session: e-Poster Display Session
101P - HIF1-α depletion overcomes resistance to oxaliplatin in colorectal cancer via ERK signalling pathway
Presenter: Se Jun Park
Session: e-Poster Display Session
102P - Colorectal cancer organoids culture exploits new neoadjuvant therapy resistance mechanisms and therapeutic targets
Presenter: Yun Deng
Session: e-Poster Display Session
103P - Comprehensive genomic landscape in younger and older Chinese patients with colorectal cancer
Presenter: Huina Wang
Session: e-Poster Display Session
104P - Safety and efficacy of HLX04 versus reference bevacizumab in combination with XELOX or mFOLFOX6 as first-line treatment for metastatic colorectal cancer: A randomised, double-blind phase III study
Presenter: Shukui Qin
Session: e-Poster Display Session