Abstract 88P
Background
With lung remains the second common site of colon-rectal cancer metastasis, it is still a challenge for early detection and finding. Therefore, we evaluate the CT-based radiomics of indeterminate lung nodules, predicting lung metastasis and prognosis in locally advanced rectal cancer patients.
Methods
A retrospective review for lung metastatic patients with colon-rectal cancer (CRC) and chest CT images were conducted. Radiomic prediction model of lung metastasis was trained by 114 patients with pathologically verified lung metastasis and 122 patients with benign lung nodules. We investigate the value of radiomics for identifying lung metastasis in 174 locally advanced rectal cancer(LARC) patients with follow-up information. Then, we conducted a Cox model and Kaplan-Meier curve analysis based on radiomics risk scores, and compare them to a clinical-pathological model for prognostic prediction. We use LASSO and linear regression to generated the radiomics model. C-index was used to assess model performance.
Results
For lung metastatic nodule identification in CRC patient, the C-index was 0.794(95%CI 0.784 -0.803) in the training set and 0.752(95%CI 0.728-0.776) in the validation set. In LARC patients, the C-index for lung metastatic identification was 0.771(95%CI 0.763-0.780). For prognostic prediction in LARC patients, ypTNM stage had a great influence on prognosis(Log-rank test P=0.003), and the C-index was 0.695 (95%CI 0.638-0.752). The C-index for nodules was 0.663(95%CI 0.575-0.751) with HR=1.148 (95% 1.050-1.256, P=0.003), and P<0.001 for Log-rank test. The combination of the ypTNM stage and nodule radiomics information has the C-index of 0.757 (95%CI 0.692-0.822), with P<0.001 for Log-rank test, which increase the performance of clinical prognostic prediction(P= 0.044).
Conclusions
Radiomics for nodules can determine lung metastasis in LARC patients. Lung nodules radiomics can provide information for prognostic analysis. The combination of lung nodules radiomics and ypTNM information increases the performance of prognostic prediction in LARC patients.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
The authors.
Funding
Has not received any funding.
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
34P - Clinical significance of neoadjuvant dose-dense chemotherapy for II and III stage breast cancer: A meta-analysis of published studies
Presenter: Meng chen Liu
Session: e-Poster Display Session
35P - Pathological response to weekly nabpaclitaxel and carboplatin followed by anthracycline regimen in triple negative breast cancer
Presenter: Goteti Sharat Chandra
Session: e-Poster Display Session
36P - Survival in patients with contralateral breast cancer
Presenter: Sergey Kamishov
Session: e-Poster Display Session
37P - Correlation between haematological toxicity with quality of life in breast cancer patients after first-cycle chemotherapy
Presenter: felix Wijovi
Session: e-Poster Display Session
38P - Evaluation of the prognostic value of innate immunity-related biomarkers in early breast cancer (BC)
Presenter: Veronica Martini
Session: e-Poster Display Session
39P - CSF-1R inhibitor (C019199) enhances antitumor effect in combination with anti-PD-1 therapy on murine breast cancer models
Presenter: Jiani Zheng
Session: e-Poster Display Session
40P - Molecular subtypes and imaging phenotypes of breast cancer: MRI
Presenter: Yulduz Khatamovna
Session: e-Poster Display Session
41P - Mir-223 overexpression is associated with increased expression of EGFR and worse prognosis in Indonesian TNBC patients
Presenter: Ibnu Purwanto
Session: e-Poster Display Session
42P - Impact of germline mutations on breast cancer prognosis in Kazakh population
Presenter: Dilyara Kaidarova
Session: e-Poster Display Session
50P - Efficacy and safety analysis of pyrotinib in lapatinib resistant HER2-positive metastatic breast cancer: A retrospective study
Presenter: Yijia Hua
Session: e-Poster Display Session