Abstract 88P
Background
With lung remains the second common site of colon-rectal cancer metastasis, it is still a challenge for early detection and finding. Therefore, we evaluate the CT-based radiomics of indeterminate lung nodules, predicting lung metastasis and prognosis in locally advanced rectal cancer patients.
Methods
A retrospective review for lung metastatic patients with colon-rectal cancer (CRC) and chest CT images were conducted. Radiomic prediction model of lung metastasis was trained by 114 patients with pathologically verified lung metastasis and 122 patients with benign lung nodules. We investigate the value of radiomics for identifying lung metastasis in 174 locally advanced rectal cancer(LARC) patients with follow-up information. Then, we conducted a Cox model and Kaplan-Meier curve analysis based on radiomics risk scores, and compare them to a clinical-pathological model for prognostic prediction. We use LASSO and linear regression to generated the radiomics model. C-index was used to assess model performance.
Results
For lung metastatic nodule identification in CRC patient, the C-index was 0.794(95%CI 0.784 -0.803) in the training set and 0.752(95%CI 0.728-0.776) in the validation set. In LARC patients, the C-index for lung metastatic identification was 0.771(95%CI 0.763-0.780). For prognostic prediction in LARC patients, ypTNM stage had a great influence on prognosis(Log-rank test P=0.003), and the C-index was 0.695 (95%CI 0.638-0.752). The C-index for nodules was 0.663(95%CI 0.575-0.751) with HR=1.148 (95% 1.050-1.256, P=0.003), and P<0.001 for Log-rank test. The combination of the ypTNM stage and nodule radiomics information has the C-index of 0.757 (95%CI 0.692-0.822), with P<0.001 for Log-rank test, which increase the performance of clinical prognostic prediction(P= 0.044).
Conclusions
Radiomics for nodules can determine lung metastasis in LARC patients. Lung nodules radiomics can provide information for prognostic analysis. The combination of lung nodules radiomics and ypTNM information increases the performance of prognostic prediction in LARC patients.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
The authors.
Funding
Has not received any funding.
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
24P - The Pink Vans: Bringing cancer screening closer to home
Presenter: Frederic Ivan Ting
Session: e-Poster Display Session
25P - Identification of gene mutations in patients with breast cancer in a region located in the southeast of the European part of Russia
Presenter: Alexander Sultanbaev
Session: e-Poster Display Session
26P - Body mass index and clinical outcomes in Egyptian women with breast cancer: A multi-institutional study
Presenter: Amrou Mamdouh Abdeen Shaaban
Session: e-Poster Display Session
27P - Breast cancer primary site and laterality as predictive factors of prognosis: SEER based analysis for survival
Presenter: Eman Zin Eldin
Session: e-Poster Display Session
28P - Breast cancer care services at Nilai Medical Centre: A Malaysian experience
Presenter: Ratnavelu Kananathan
Session: e-Poster Display Session
29P - Factors affecting breast self-examination (BSE) behaviour among female high school students in Denpasar City, Bali
Presenter: Cindy Trisina
Session: e-Poster Display Session
30P - Male breast cancer: A rural based peripheral cancer center experience
Presenter: SACHIN KHANDELWAL
Session: e-Poster Display Session
31P - The prognostic value of pre-treatment peripheral neutrophil-lymphocyte-ratio (NLR) and its correlation with mutant p53 expression in Indonesian triple negative breast cancer patients
Presenter: Rosita Purwanto
Session: e-Poster Display Session
32P - Clinicopathologic features and prognostic factors in male breast cancer: A single centre experience
Presenter: Izzet Dogan
Session: e-Poster Display Session
33P - FDG-PET predictivity of pathological axillary nodal status in carcinoma breast-upfront and post-neoadjuvant chemotherapy (NACT) setting
Presenter: Krithikaa Sekar
Session: e-Poster Display Session