Abstract 88P
Background
With lung remains the second common site of colon-rectal cancer metastasis, it is still a challenge for early detection and finding. Therefore, we evaluate the CT-based radiomics of indeterminate lung nodules, predicting lung metastasis and prognosis in locally advanced rectal cancer patients.
Methods
A retrospective review for lung metastatic patients with colon-rectal cancer (CRC) and chest CT images were conducted. Radiomic prediction model of lung metastasis was trained by 114 patients with pathologically verified lung metastasis and 122 patients with benign lung nodules. We investigate the value of radiomics for identifying lung metastasis in 174 locally advanced rectal cancer(LARC) patients with follow-up information. Then, we conducted a Cox model and Kaplan-Meier curve analysis based on radiomics risk scores, and compare them to a clinical-pathological model for prognostic prediction. We use LASSO and linear regression to generated the radiomics model. C-index was used to assess model performance.
Results
For lung metastatic nodule identification in CRC patient, the C-index was 0.794(95%CI 0.784 -0.803) in the training set and 0.752(95%CI 0.728-0.776) in the validation set. In LARC patients, the C-index for lung metastatic identification was 0.771(95%CI 0.763-0.780). For prognostic prediction in LARC patients, ypTNM stage had a great influence on prognosis(Log-rank test P=0.003), and the C-index was 0.695 (95%CI 0.638-0.752). The C-index for nodules was 0.663(95%CI 0.575-0.751) with HR=1.148 (95% 1.050-1.256, P=0.003), and P<0.001 for Log-rank test. The combination of the ypTNM stage and nodule radiomics information has the C-index of 0.757 (95%CI 0.692-0.822), with P<0.001 for Log-rank test, which increase the performance of clinical prognostic prediction(P= 0.044).
Conclusions
Radiomics for nodules can determine lung metastasis in LARC patients. Lung nodules radiomics can provide information for prognostic analysis. The combination of lung nodules radiomics and ypTNM information increases the performance of prognostic prediction in LARC patients.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
The authors.
Funding
Has not received any funding.
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
77P - Dual targeting oxidative phosphorylation and glycolysis in triple-negative breast cancers: En route to effective inhibition of tumour metabolism
Presenter: Alexander Scherbakov
Session: e-Poster Display Session
78P - Novel allogeneic cell immunotherapy for advanced cancers
Presenter: Ratnavelu Kananathan
Session: e-Poster Display Session
86P - The impact of sarcopenia on chemotherapy toxicity and survival rate among colorectal cancer patients who underwent chemotherapy: A systematic review and meta-analysis
Presenter: Timotius Hariyanto
Session: e-Poster Display Session
87P - Predictive risk factors and online nomograms for colon cancer with synchronous liver metastasis
Presenter: Yajuan Zhu
Session: e-Poster Display Session
89P - Biomarker analysis of regorafenib dose escalation study (RECC study): A phase II multicenter clinical trial in Japan
Presenter: Masanobu Enomoto
Session: e-Poster Display Session
90P - The role of miR-133a-3p/SP1/IGF1R axis in the progression of colorectal cancer
Presenter: Hui Li
Session: e-Poster Display Session
91P - Prognostic biomarker of clinical outcome in locally advanced rectal cancer in Chinese patients
Presenter: Sandy Ho
Session: e-Poster Display Session
92P - Development and validation of risk and prognostic nomograms for bone metastases in advanced colorectal cancer patients
Presenter: Nan Wang
Session: e-Poster Display Session
93P - Assessment of nutritional status of colorectal cancer patients in a tertiary government hospital
Presenter: Rogelio Velasco
Session: e-Poster Display Session
94P - Prognostic influence of mean platelet volume on stage III rectal cancer patients: A tertiary cancer center study
Presenter: Pavan Jonnada
Session: e-Poster Display Session