Abstract 361P
Background
Thoracic stereotactic body radiotherapy (SBRT) is widely applied in both early and metastatic disease. Pathological CR rate after SBRT was quoted around 60%. Thus, it is important to predict responder and non-responder to SBRT. With advent of radiomics, textual features of tumor can be extracted from imaging. We propose a model to predict radiological response after SBRT based on tumor radiomics features regardless of histology and staging.
Methods
Patients receiving thoracic SBRT using active breathing control (ABC) were retrospectively recruited regardless of tumor histology/primary and staging. All patients received 50-54 Gy in 3-4 fractions equivalent to BED >100Gy. All patients had regular contrast CT Thorax per protocol and PET/CT if indicated. Tumor response was assessed by an independent senior radiologist based on RECIST criteria. Responders are defined as complete response (CR) or partial response (PR). Non-responders were defined as those with stable or progressive disease. Gross tumor volumes (GTV) were contoured on the initial planning CT. 110 radiomics features including voxel intensities, textual and gray level features were extracted using pyradiomics module. The features were then analyzed using in-house software. A model using support vector machine (SVM) was trained to predict response based solely on the extracted radiomics features. 10-fold cross validation was used to avoid overfitting. ROC curves were constructed to evaluate model performance.
Results
68 patients were recruited from 2008 to 2018. 54 patients had lung primaries while 14 patients had thoracic oligo-metastases. Secondaries include colorectal, head and neck squamous cell carcinoma and hepatocellular carcinoma. 85 tumors were analyzed, of which 31 tumors had CR and 11 tumors had PR. The radiomic model developed had an accuracy of 74.8%. The AUC for CR, PR and non-responder prediction was 0.865 (95% CI: 0.794 – 0.921), 0.946 (95% CI: 0.873 – 0.978) and 0.857 (95% CI: 0.789 – 0.915) respectively. Under the threshold, the sensitivity was 89% while the specificity was 68% for detecting non-responders.
Conclusions
Radiomic is a promising technique that can predict tumor response with good accuracy.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
Department of Clinical Oncology, Queen Mary Hospital.
Funding
Has not received any funding.
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
77P - Dual targeting oxidative phosphorylation and glycolysis in triple-negative breast cancers: En route to effective inhibition of tumour metabolism
Presenter: Alexander Scherbakov
Session: e-Poster Display Session
78P - Novel allogeneic cell immunotherapy for advanced cancers
Presenter: Ratnavelu Kananathan
Session: e-Poster Display Session
86P - The impact of sarcopenia on chemotherapy toxicity and survival rate among colorectal cancer patients who underwent chemotherapy: A systematic review and meta-analysis
Presenter: Timotius Hariyanto
Session: e-Poster Display Session
87P - Predictive risk factors and online nomograms for colon cancer with synchronous liver metastasis
Presenter: Yajuan Zhu
Session: e-Poster Display Session
88P - Research of radiomics based on indeterminate lung nodules predicting prognosis of LARC patients
Presenter: Zhang Zhiyuan
Session: e-Poster Display Session
89P - Biomarker analysis of regorafenib dose escalation study (RECC study): A phase II multicenter clinical trial in Japan
Presenter: Masanobu Enomoto
Session: e-Poster Display Session
90P - The role of miR-133a-3p/SP1/IGF1R axis in the progression of colorectal cancer
Presenter: Hui Li
Session: e-Poster Display Session
91P - Prognostic biomarker of clinical outcome in locally advanced rectal cancer in Chinese patients
Presenter: Sandy Ho
Session: e-Poster Display Session
92P - Development and validation of risk and prognostic nomograms for bone metastases in advanced colorectal cancer patients
Presenter: Nan Wang
Session: e-Poster Display Session
93P - Assessment of nutritional status of colorectal cancer patients in a tertiary government hospital
Presenter: Rogelio Velasco
Session: e-Poster Display Session