Abstract 361P
Background
Thoracic stereotactic body radiotherapy (SBRT) is widely applied in both early and metastatic disease. Pathological CR rate after SBRT was quoted around 60%. Thus, it is important to predict responder and non-responder to SBRT. With advent of radiomics, textual features of tumor can be extracted from imaging. We propose a model to predict radiological response after SBRT based on tumor radiomics features regardless of histology and staging.
Methods
Patients receiving thoracic SBRT using active breathing control (ABC) were retrospectively recruited regardless of tumor histology/primary and staging. All patients received 50-54 Gy in 3-4 fractions equivalent to BED >100Gy. All patients had regular contrast CT Thorax per protocol and PET/CT if indicated. Tumor response was assessed by an independent senior radiologist based on RECIST criteria. Responders are defined as complete response (CR) or partial response (PR). Non-responders were defined as those with stable or progressive disease. Gross tumor volumes (GTV) were contoured on the initial planning CT. 110 radiomics features including voxel intensities, textual and gray level features were extracted using pyradiomics module. The features were then analyzed using in-house software. A model using support vector machine (SVM) was trained to predict response based solely on the extracted radiomics features. 10-fold cross validation was used to avoid overfitting. ROC curves were constructed to evaluate model performance.
Results
68 patients were recruited from 2008 to 2018. 54 patients had lung primaries while 14 patients had thoracic oligo-metastases. Secondaries include colorectal, head and neck squamous cell carcinoma and hepatocellular carcinoma. 85 tumors were analyzed, of which 31 tumors had CR and 11 tumors had PR. The radiomic model developed had an accuracy of 74.8%. The AUC for CR, PR and non-responder prediction was 0.865 (95% CI: 0.794 – 0.921), 0.946 (95% CI: 0.873 – 0.978) and 0.857 (95% CI: 0.789 – 0.915) respectively. Under the threshold, the sensitivity was 89% while the specificity was 68% for detecting non-responders.
Conclusions
Radiomic is a promising technique that can predict tumor response with good accuracy.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
Department of Clinical Oncology, Queen Mary Hospital.
Funding
Has not received any funding.
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
24P - The Pink Vans: Bringing cancer screening closer to home
Presenter: Frederic Ivan Ting
Session: e-Poster Display Session
25P - Identification of gene mutations in patients with breast cancer in a region located in the southeast of the European part of Russia
Presenter: Alexander Sultanbaev
Session: e-Poster Display Session
26P - Body mass index and clinical outcomes in Egyptian women with breast cancer: A multi-institutional study
Presenter: Amrou Mamdouh Abdeen Shaaban
Session: e-Poster Display Session
27P - Breast cancer primary site and laterality as predictive factors of prognosis: SEER based analysis for survival
Presenter: Eman Zin Eldin
Session: e-Poster Display Session
28P - Breast cancer care services at Nilai Medical Centre: A Malaysian experience
Presenter: Ratnavelu Kananathan
Session: e-Poster Display Session
29P - Factors affecting breast self-examination (BSE) behaviour among female high school students in Denpasar City, Bali
Presenter: Cindy Trisina
Session: e-Poster Display Session
30P - Male breast cancer: A rural based peripheral cancer center experience
Presenter: SACHIN KHANDELWAL
Session: e-Poster Display Session
31P - The prognostic value of pre-treatment peripheral neutrophil-lymphocyte-ratio (NLR) and its correlation with mutant p53 expression in Indonesian triple negative breast cancer patients
Presenter: Rosita Purwanto
Session: e-Poster Display Session
32P - Clinicopathologic features and prognostic factors in male breast cancer: A single centre experience
Presenter: Izzet Dogan
Session: e-Poster Display Session
33P - FDG-PET predictivity of pathological axillary nodal status in carcinoma breast-upfront and post-neoadjuvant chemotherapy (NACT) setting
Presenter: Krithikaa Sekar
Session: e-Poster Display Session