Abstract 361P
Background
Thoracic stereotactic body radiotherapy (SBRT) is widely applied in both early and metastatic disease. Pathological CR rate after SBRT was quoted around 60%. Thus, it is important to predict responder and non-responder to SBRT. With advent of radiomics, textual features of tumor can be extracted from imaging. We propose a model to predict radiological response after SBRT based on tumor radiomics features regardless of histology and staging.
Methods
Patients receiving thoracic SBRT using active breathing control (ABC) were retrospectively recruited regardless of tumor histology/primary and staging. All patients received 50-54 Gy in 3-4 fractions equivalent to BED >100Gy. All patients had regular contrast CT Thorax per protocol and PET/CT if indicated. Tumor response was assessed by an independent senior radiologist based on RECIST criteria. Responders are defined as complete response (CR) or partial response (PR). Non-responders were defined as those with stable or progressive disease. Gross tumor volumes (GTV) were contoured on the initial planning CT. 110 radiomics features including voxel intensities, textual and gray level features were extracted using pyradiomics module. The features were then analyzed using in-house software. A model using support vector machine (SVM) was trained to predict response based solely on the extracted radiomics features. 10-fold cross validation was used to avoid overfitting. ROC curves were constructed to evaluate model performance.
Results
68 patients were recruited from 2008 to 2018. 54 patients had lung primaries while 14 patients had thoracic oligo-metastases. Secondaries include colorectal, head and neck squamous cell carcinoma and hepatocellular carcinoma. 85 tumors were analyzed, of which 31 tumors had CR and 11 tumors had PR. The radiomic model developed had an accuracy of 74.8%. The AUC for CR, PR and non-responder prediction was 0.865 (95% CI: 0.794 – 0.921), 0.946 (95% CI: 0.873 – 0.978) and 0.857 (95% CI: 0.789 – 0.915) respectively. Under the threshold, the sensitivity was 89% while the specificity was 68% for detecting non-responders.
Conclusions
Radiomic is a promising technique that can predict tumor response with good accuracy.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
Department of Clinical Oncology, Queen Mary Hospital.
Funding
Has not received any funding.
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
133P - Which patient subgroup needs more attention in early treatment failure? A matched cohort study of treatment failure patterns in locally advanced gastric cancer
Presenter: Dong Wu
Session: e-Poster Display Session
134P - Effect of preoperative tumour under-staging on the long-term survival of patients undergoing radical gastrectomy for gastric cancer
Presenter: Mi Lin
Session: e-Poster Display Session
135P - Significance of lymphatic invasion in the indication for additional gastrectomy after endoscopic treatment
Presenter: Hirohito Fujikawa
Session: e-Poster Display Session
136P - Modified ypTNM staging classification for gastric cancer after neoadjuvant therapy: A multi-institutional study
Presenter: Wen-Wu Qiu
Session: e-Poster Display Session
137P - Clinical utility of circulating tumour DNA (ctDNA) in resectable gastric cancer (GC)
Presenter: Mikhail Fedyanin
Session: e-Poster Display Session
138P - Prognostic importance of dynamic changes in systemic inflammatory markers for patients with gastric cancer
Presenter: Ying-Qi Huang
Session: e-Poster Display Session
139P - An intraoperative model for predicting survival and deciding therapeutic schedules: A comprehensive analysis of peritoneal metastasis in patients with advanced gastric cancer
Presenter: Zhi-Yu Liu
Session: e-Poster Display Session
140P - Preoperative and postoperative C-reactive protein levels predict recurrence and chemotherapy benefit in gastric cancer
Presenter: Li-Li Shen
Session: e-Poster Display Session
141P - Low expression of CDK5RAP3 and UFM1 indicates poor prognosis in patients with gastric cancer
Presenter: Ning-Zi Lian
Session: e-Poster Display Session
142P - Prognostic analysis of patients with intra-abdominal infectious complications after laparoscopy and open radical gastrectomy for gastric cancer: A propensity score-matching analysis
Presenter: Si-Jin Que
Session: e-Poster Display Session