Abstract 361P
Background
Thoracic stereotactic body radiotherapy (SBRT) is widely applied in both early and metastatic disease. Pathological CR rate after SBRT was quoted around 60%. Thus, it is important to predict responder and non-responder to SBRT. With advent of radiomics, textual features of tumor can be extracted from imaging. We propose a model to predict radiological response after SBRT based on tumor radiomics features regardless of histology and staging.
Methods
Patients receiving thoracic SBRT using active breathing control (ABC) were retrospectively recruited regardless of tumor histology/primary and staging. All patients received 50-54 Gy in 3-4 fractions equivalent to BED >100Gy. All patients had regular contrast CT Thorax per protocol and PET/CT if indicated. Tumor response was assessed by an independent senior radiologist based on RECIST criteria. Responders are defined as complete response (CR) or partial response (PR). Non-responders were defined as those with stable or progressive disease. Gross tumor volumes (GTV) were contoured on the initial planning CT. 110 radiomics features including voxel intensities, textual and gray level features were extracted using pyradiomics module. The features were then analyzed using in-house software. A model using support vector machine (SVM) was trained to predict response based solely on the extracted radiomics features. 10-fold cross validation was used to avoid overfitting. ROC curves were constructed to evaluate model performance.
Results
68 patients were recruited from 2008 to 2018. 54 patients had lung primaries while 14 patients had thoracic oligo-metastases. Secondaries include colorectal, head and neck squamous cell carcinoma and hepatocellular carcinoma. 85 tumors were analyzed, of which 31 tumors had CR and 11 tumors had PR. The radiomic model developed had an accuracy of 74.8%. The AUC for CR, PR and non-responder prediction was 0.865 (95% CI: 0.794 – 0.921), 0.946 (95% CI: 0.873 – 0.978) and 0.857 (95% CI: 0.789 – 0.915) respectively. Under the threshold, the sensitivity was 89% while the specificity was 68% for detecting non-responders.
Conclusions
Radiomic is a promising technique that can predict tumor response with good accuracy.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
Department of Clinical Oncology, Queen Mary Hospital.
Funding
Has not received any funding.
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
51P - Real world outcomes in elderly women with HER2-positive advanced breast cancer
Presenter: Nicole Evans
Session: e-Poster Display Session
52P - Chemotherapy selection in routine clinical practice in Japan for HER2-negative advanced or metastatic breast cancer (KBCRN A001: E-SPEC Study)
Presenter: Yookija Kang
Session: e-Poster Display Session
53P - Aromatase inhibitor and cyclin-dependent kinase 4/6 inhibitor treated HR+/HER2- metastatic breast cancer differ to those treated with Aromatase inhibitors alone on progression
Presenter: Indunil Weerasena
Session: e-Poster Display Session
54P - Platinum-based chemotherapy in advanced breast cancer (ABC): Real-world outcome from a tertiary cancer centre in India
Presenter: Indhuja Vijesh
Session: e-Poster Display Session
55P - Eribulin in heavily pretreated metastatic breast cancer: A real-world data from India
Presenter: Tanmoy Mandal
Session: e-Poster Display Session
56P - Treatment of palbociclib in hormone receptor-positive breast cancer in China: A real-world study
Presenter: Yiqi Yang
Session: e-Poster Display Session
57P - Therapeutic vulnerability of malignant phyllodes tumour to pazopanib identified through a novel patient-derived xenograft and cell line model
Presenter: Dave Ng
Session: e-Poster Display Session
58P - Survival benefit of local treatments in breast cancer with lung metastasis: Results from a large retrospective study
Presenter: Yimeng Chen
Session: e-Poster Display Session
59P - The impact of site of metastasis on overall survival in indigenous and non-indigenous patients of Western Australia with breast cancer
Presenter: Azim Khan
Session: e-Poster Display Session
60P - Risk factors of bone metastasis and skeletal-related events in high-risk breast cancer patients
Presenter: Sumadi Lukman Anwar
Session: e-Poster Display Session