Oops, you're using an old version of your browser so some of the features on this page may not be displaying properly.

MINIMAL Requirements: Google Chrome 24+Mozilla Firefox 20+Internet Explorer 11Opera 15–18Apple Safari 7SeaMonkey 2.15-2.23

e-Poster Display Session

361P - Radiomic model predicting radiological response after thoracic stereotactic body radiotherapy regardless of tumor histology and staging

Date

22 Nov 2020

Session

e-Poster Display Session

Topics

Radiation Oncology

Tumour Site

Presenters

Ben Man Fei Cheung

Citation

Annals of Oncology (2020) 31 (suppl_6): S1378-S1381. 10.1016/annonc/annonc365

Authors

B.M.F. Cheung1, J.K.S. Lau2, M.Y. Luk2, K.K. Yuen1

Author affiliations

  • 1 Department Of Clinical Oncology, Queen Mary Hospital, 00000 - Hong Kong/HK
  • 2 Department Of Clinical Oncology, Queen Mary Hospital, Hong Kong/HK

Resources

Login to get immediate access to this content.

If you do not have an ESMO account, please create one for free.

Abstract 361P

Background

Thoracic stereotactic body radiotherapy (SBRT) is widely applied in both early and metastatic disease. Pathological CR rate after SBRT was quoted around 60%. Thus, it is important to predict responder and non-responder to SBRT. With advent of radiomics, textual features of tumor can be extracted from imaging. We propose a model to predict radiological response after SBRT based on tumor radiomics features regardless of histology and staging.

Methods

Patients receiving thoracic SBRT using active breathing control (ABC) were retrospectively recruited regardless of tumor histology/primary and staging. All patients received 50-54 Gy in 3-4 fractions equivalent to BED >100Gy. All patients had regular contrast CT Thorax per protocol and PET/CT if indicated. Tumor response was assessed by an independent senior radiologist based on RECIST criteria. Responders are defined as complete response (CR) or partial response (PR). Non-responders were defined as those with stable or progressive disease. Gross tumor volumes (GTV) were contoured on the initial planning CT. 110 radiomics features including voxel intensities, textual and gray level features were extracted using pyradiomics module. The features were then analyzed using in-house software. A model using support vector machine (SVM) was trained to predict response based solely on the extracted radiomics features. 10-fold cross validation was used to avoid overfitting. ROC curves were constructed to evaluate model performance.

Results

68 patients were recruited from 2008 to 2018. 54 patients had lung primaries while 14 patients had thoracic oligo-metastases. Secondaries include colorectal, head and neck squamous cell carcinoma and hepatocellular carcinoma. 85 tumors were analyzed, of which 31 tumors had CR and 11 tumors had PR. The radiomic model developed had an accuracy of 74.8%. The AUC for CR, PR and non-responder prediction was 0.865 (95% CI: 0.794 – 0.921), 0.946 (95% CI: 0.873 – 0.978) and 0.857 (95% CI: 0.789 – 0.915) respectively. Under the threshold, the sensitivity was 89% while the specificity was 68% for detecting non-responders.

Conclusions

Radiomic is a promising technique that can predict tumor response with good accuracy.

Clinical trial identification

Editorial acknowledgement

Legal entity responsible for the study

Department of Clinical Oncology, Queen Mary Hospital.

Funding

Has not received any funding.

Disclosure

All authors have declared no conflicts of interest.

This site uses cookies. Some of these cookies are essential, while others help us improve your experience by providing insights into how the site is being used.

For more detailed information on the cookies we use, please check our Privacy Policy.

Customise settings
  • Necessary cookies enable core functionality. The website cannot function properly without these cookies, and you can only disable them by changing your browser preferences.