Abstract 14P
Background
Classification of molecular subtypes of breast cancer is widely used in clinical decision-making, leading to different treatment responses and clinical outcomes. We classified molecular subtypes using a novel deep learning algorithm in whole-slide histopathological images (WSIs) with invasive ductal carcinoma of the breast.
Methods
We obtained 1,094 breast cancer cases with available hematoxylin and eosin-stained WSIs from the TCGA database. We applied a new deep learning algorithm for artificial neural networks (ANNs) that is completely different from the back-propagation method developed in previous studies.
Results
Our model based on the ANN algorithm had an accuracy of 67.8% for all datasets (training and testing), and the area under the receiver operating characteristic curve was 0.819 when classifying molecular subtypes of breast cancer. In approximately 30% of cases, the molecular subtype did not reflect the unique histological subtype, which lowered the accuracy. The set revealed relatively high sensitivity (70.5%) and specificity (84.4%).
Conclusions
Our approach involving this ANN model has favorable diagnostic performance for molecular classification of breast cancer based on WSIs and could provide reliable results for planning treatment strategies.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
The authors.
Funding
Has not received any funding.
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
497P - Sintilimab in combination with anlotinib in advanced NSCLC treated with first-line PD-1 antibodies: An open, single-arm, phase II trial
Presenter: Ying Jin
Session: Poster Display
Resources:
Abstract
498P - Frailty-adjusted life expectancy and survival in older lung cancer patients: A large-scale electronic health-record based study
Presenter: Thao Tu
Session: Poster Display
Resources:
Abstract
499P - Long-term survival and treatment (tx) patterns after first-line (1L) osimertinib in patients (pts) with epidermal growth factor receptor (EGFR) mutation-positive (m) advanced non-small cell lung cancer (NSCLC): Japanese cohort of a global real-world (rw) observational study
Presenter: Daichi Fujimoto
Session: Poster Display
Resources:
Abstract
500P - The effectiveness and safety of durvalumab after chemoradiotherapy for locoregional recurrence of completely resected non-small cell lung cancer: Real-world, multicenter, observational study (NEJ056)
Presenter: Hidehito Horinouchi
Session: Poster Display
Resources:
Abstract
501P - One-year survival outcomes of unresectable stage III non-small cell lung cancer patients who underwent PD-1 inhibitor plus chemo as induction therapy
Presenter: Xin Wang
Session: Poster Display
Resources:
Abstract
502P - Impact of sarcopenia on the outcome of patients with locally advanced non-small cell lung cancer treated with chemoradiotherapy followed by durvalumab
Presenter: Kentaro Tamura
Session: Poster Display
Resources:
Abstract
503P - Clinical outcomes by infusion timing of immune checkpoint inhibitors in patients with locally advanced NSCLC
Presenter: TSUYOSHI HIRATA
Session: Poster Display
Resources:
Abstract
504P - Real-world outcomes with induction systemic therapy for stage III in eligible for upfront local therapy: Pre vs post immunotherapy era in a tertiary referral centre
Presenter: Praveen Kumar Marimuthu
Session: Poster Display
Resources:
Abstract
505P - Neoadjuvant PD-1 inhibitor (tislelizumab) plus platinum–etoposide in patients with limited-stage small cell lung cancer: A phase II trial
Presenter: Junjie Hu
Session: Poster Display
Resources:
Abstract
506P - Intrathoracic progression is still the most dominant failure pattern after first-line chemo-immunotherapy in extensive-stage small-cell lung cancer: Implications for thoracic radiotherapy
Presenter: Byoung Hyuck Kim
Session: Poster Display
Resources:
Abstract