Abstract 14P
Background
Classification of molecular subtypes of breast cancer is widely used in clinical decision-making, leading to different treatment responses and clinical outcomes. We classified molecular subtypes using a novel deep learning algorithm in whole-slide histopathological images (WSIs) with invasive ductal carcinoma of the breast.
Methods
We obtained 1,094 breast cancer cases with available hematoxylin and eosin-stained WSIs from the TCGA database. We applied a new deep learning algorithm for artificial neural networks (ANNs) that is completely different from the back-propagation method developed in previous studies.
Results
Our model based on the ANN algorithm had an accuracy of 67.8% for all datasets (training and testing), and the area under the receiver operating characteristic curve was 0.819 when classifying molecular subtypes of breast cancer. In approximately 30% of cases, the molecular subtype did not reflect the unique histological subtype, which lowered the accuracy. The set revealed relatively high sensitivity (70.5%) and specificity (84.4%).
Conclusions
Our approach involving this ANN model has favorable diagnostic performance for molecular classification of breast cancer based on WSIs and could provide reliable results for planning treatment strategies.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
The authors.
Funding
Has not received any funding.
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
623P - Advances in methylation analysis of liquid biopsy in early cancer detection of colorectal and lung cancer
Presenter: Sam Martin
Session: Poster Display
Resources:
Abstract
624P - Pan-cancer single-cell isoform atlas: Unraveling isoform dynamics in cancer immunotherapy
Presenter: Lu Pan
Session: Poster Display
Resources:
Abstract
625P - The association of tumor marker concentration and air pollution in cancer survivors and the general population
Presenter: Kyae Hyung Kim
Session: Poster Display
Resources:
Abstract
626P - Percentage of cancer patients undergoing adjusted targeted therapy after ctDNA testing: Insights from a tertiary hospital experience
Presenter: Jisook Yim
Session: Poster Display
Resources:
Abstract
627P - Racial disparities in synchronous and metachronous colorectal and prostate cancer: SEER based study 2000-2020
Presenter: Taha Nagib
Session: Poster Display
Resources:
Abstract