Abstract 14P
Background
Classification of molecular subtypes of breast cancer is widely used in clinical decision-making, leading to different treatment responses and clinical outcomes. We classified molecular subtypes using a novel deep learning algorithm in whole-slide histopathological images (WSIs) with invasive ductal carcinoma of the breast.
Methods
We obtained 1,094 breast cancer cases with available hematoxylin and eosin-stained WSIs from the TCGA database. We applied a new deep learning algorithm for artificial neural networks (ANNs) that is completely different from the back-propagation method developed in previous studies.
Results
Our model based on the ANN algorithm had an accuracy of 67.8% for all datasets (training and testing), and the area under the receiver operating characteristic curve was 0.819 when classifying molecular subtypes of breast cancer. In approximately 30% of cases, the molecular subtype did not reflect the unique histological subtype, which lowered the accuracy. The set revealed relatively high sensitivity (70.5%) and specificity (84.4%).
Conclusions
Our approach involving this ANN model has favorable diagnostic performance for molecular classification of breast cancer based on WSIs and could provide reliable results for planning treatment strategies.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
The authors.
Funding
Has not received any funding.
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
472P - Risk of recurrence and optimal adjuvant treatment in invasive lung adenocarcinomas manifesting as radiological part-solid nodules
Presenter: Yang Wo
Session: Poster Display
Resources:
Abstract
473P - Treatment (tx) patterns in resectable stage IA–IIIA non-small cell lung cancer (NSCLC) in China: Subgroup analysis of a global real-world (rw) study
Presenter: Chih-Chi Yang
Session: Poster Display
Resources:
Abstract
474P - The efficacy of image guided coil localisation for surgical resection of undiagnosed solitary lung nodule
Presenter: Jun Rey Leong
Session: Poster Display
Resources:
Abstract
475P - 5-year overall survival and disease free survival outcome between lobectomy and segmentectomy for early stage lung cancer in a mixed Asian population
Presenter: Jianye Chen
Session: Poster Display
Resources:
Abstract
478P - Peri-operative risks in curative lung resection of early stage primary lung cancer patients above 70 years old in a mixed Asian population
Presenter: Ian Goh
Session: Poster Display
Resources:
Abstract
480P - Aumolertinib as adjuvant therapy for resectable stage I-III EGFR-mutant NSCLC: Also effective in EGFR co-mutation
Presenter: Lin Wu
Session: Poster Display
Resources:
Abstract
481P - Comparative analysis of three NGS platforms assessing tumor mutational burden and mutational landscape in resectable non-small cell lung cancer
Presenter: Jii Bum Lee
Session: Poster Display
Resources:
Abstract
482P - Prevalence of EGFR mutations (EGFRm) and its subtypes in patients (pts) with resected stage I-III NSCLC: Results from EARLY-EGFR Singapore cohort
Presenter: Puey Ling Chia
Session: Poster Display
Resources:
Abstract
483P - Genetic profiles and evolutionary trajectory of early stage lung adenocarcinoma (AAH, AIS, MIA and IAC) revealed by multiplex sequecing
Presenter: lixuan lin
Session: Poster Display
Resources:
Abstract
484P - Treatment (tx) patterns and outcomes in resectable early-stage EGFR-mutated (EGFRm) NSCLC in South Korea: Subgroup analysis of a global real-world (rw) study
Presenter: Myung-Ju Ahn
Session: Poster Display
Resources:
Abstract