Abstract 14P
Background
Classification of molecular subtypes of breast cancer is widely used in clinical decision-making, leading to different treatment responses and clinical outcomes. We classified molecular subtypes using a novel deep learning algorithm in whole-slide histopathological images (WSIs) with invasive ductal carcinoma of the breast.
Methods
We obtained 1,094 breast cancer cases with available hematoxylin and eosin-stained WSIs from the TCGA database. We applied a new deep learning algorithm for artificial neural networks (ANNs) that is completely different from the back-propagation method developed in previous studies.
Results
Our model based on the ANN algorithm had an accuracy of 67.8% for all datasets (training and testing), and the area under the receiver operating characteristic curve was 0.819 when classifying molecular subtypes of breast cancer. In approximately 30% of cases, the molecular subtype did not reflect the unique histological subtype, which lowered the accuracy. The set revealed relatively high sensitivity (70.5%) and specificity (84.4%).
Conclusions
Our approach involving this ANN model has favorable diagnostic performance for molecular classification of breast cancer based on WSIs and could provide reliable results for planning treatment strategies.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
The authors.
Funding
Has not received any funding.
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
462P - Cognitive function of survivors with non-central nervous system cancer and its correlates: A community rehabilitation perspective
Presenter: Ann Kuo
Session: Poster Display
Resources:
Abstract
463P - The use of antipsychotic for managing delirium in patients with cancer
Presenter: Natasya Reina
Session: Poster Display
Resources:
Abstract
464P - The prevalence and correlates of frailty and pre-frailty in elderly patients with breast cancer: A cross-sectional study from China
Presenter: Min Xiao
Session: Poster Display
Resources:
Abstract
465P - Oncological care needs of people with mental illness: A single institution experience in Australia
Presenter: Hui Ling Yeoh
Session: Poster Display
Resources:
Abstract
466P - Identification of patient satisfaction predictors among women attending oncology daycare unit using validated survey questionnaire (PSS Tool): An institutional experience in central India
Presenter: Rajesh Patidar
Session: Poster Display
Resources:
Abstract
467P - Evaluation of the effectiveness of a cluster management model based on evidence-based concepts in oncology nutrition case management
Presenter: Li He
Session: Poster Display
Resources:
Abstract
468P - The patterns of use of Traditional Chinese Medicine (TCM) in cancer patients in Hong Kong
Presenter: Olivia L T Chan
Session: Poster Display
Resources:
Abstract
469P - The need of special care for adolescent and young adult (AYA) cancer survivors: Perspective from oncologists in India
Presenter: Nandini Menon
Session: Poster Display
Resources:
Abstract
470TiP - Randomised controlled trial to evaluate the efficacy and safety of moisturising creams with or without palm-oil-derived vitamin E concentrate in addition to urea-based cream or urea-based cream alone in Capecitabine-associated Palmar-Plantar Erythrodysesthesia (ECaPPE)
Presenter: Pei-Jye Voon
Session: Poster Display
Resources:
Abstract
471TiP - A group sequential, response-adaptive randomized double-blinded clinical trial to evaluate add-on olanzapine plus pregabalin to prevent chemotherapy-induced nausea and vomiting (CINV ) in patients belonging to low socio-economic status
Presenter: Mathan Ramasubbu
Session: Poster Display
Resources:
Abstract