Abstract 159P
Background
The stromal component constitutes as much as 90% of pancreatic cancer specimens, dynamically interacting with the tumor and adapting into a pro-survival environment. This poses a clinical challenge, as biopsies often miss cancer by only sampling stroma. By leveraging AI and image analysis, we aim to extract informative cues from stromal interactions for novel cancer biomarker identification. This approach offers the potential for enhanced diagnostic precision and a deeper understanding of pancreatic cancer biology.
Methods
Anonymized digital scans of pancreatic cancer and chronic pancreatitis were sourced from the Centre Hospitalier de l’Université de Montréal. QuPath 0.4.3 aided slide annotation, with subsequent TIF annotation export. Staining normalization was performed via the Mitkovetta technique in Python. Our process involved deep-learning stromal segmentation, prioritizing >95% stromal tiles using Ilastik. Feature extraction was executed utilizing computer vision techniques (Haralick features), alongside the pre-trained and class-trained ImageNet deep-neural network, VGG16.
Results
Our annotated, normalized, automated, and 95% stroma-probability method generated for the training cohort 9829 cancer and 1638 mass-forming pancreatitis tiles, and 10776 cancer and 1211 pancreatitis tiles for the testing set. The table highlights the performance of the classical computer vision approach (Haralicks features extraction in RGB). Furthermore, transferring the ImageNet VGG-16 pre-trained model to our dataset managed to predict the presence of adjacent cancer at 86.6% accuracy. Table: 159P
Training | Validation | |||
Haralicks features | Cancer (N=9829) vs None (N=1638) | P | Cancer (N=10776) vs None (N=1211) | P |
RGB-F2 | +66% | 7.52 X 10-308 | +8.2% | 1.37 X 10-9 |
RGB-F15 | +54% | 3.28 X 10-272 | +8.5% | 8.57 X 10-11 |
RGB F37 | +9.6% | 2.35 X 10-294 | +2.7% | 5.02 X 10-36 |
Conclusions
We demonstrate that normalized stromal tiles could predict the presence of cancer accurately just by their morphological features at HE staining. This highlights the importance of stroma for diagnostic purposes and can serve as the basis for future studies through multiplex imaging and spatial transcriptomics.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
Vincent Quoc-Huy Trinh.
Funding
Fonds de Recherche Québec Santé.
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
592P - Treatment patterns and outcomes in patients with advanced non-small cell lung cancer with MET exon 14 skipping alterations in China
Presenter: Hanxiao Chen
Session: Poster Display
Resources:
Abstract
593P - MET TKIs in Asian patients (pts) with MET exon 14 skipping NSCLC: A matching-adjusted indirect comparison (MAIC)
Presenter: E-e Ke
Session: Poster Display
Resources:
Abstract
594P - The treatment pattern and clinical outcome in NSCLC patients with MET alteration: A retrospective real-world analysis in China
Presenter: Yongfeng Yu
Session: Poster Display
Resources:
Abstract
595P - Durable efficacy of zenocutuzumab, a HER2 x HER3 bispecific antibody, in advanced NRG1 fusion-positive (NRG1+) non-small cell lung cancer (NSCLC)
Presenter: Koichi Goto
Session: Poster Display
Resources:
Abstract
596P - Repotrectinib in patients (pts) from Asia and China with ROS1 fusion-positive (ROS1+) non-small cell lung cancer (NSCLC): Results from the phase I/II TRIDENT-1 trial
Presenter: Ross Soo
Session: Poster Display
Resources:
Abstract
597TiP - A phase I/II study to evaluate the safety and anti-tumor activity of JIN-A02 in patients with EGFR TKI-refractory, EGFR-mutant advanced NSCLC
Presenter: Sun Min Lim
Session: Poster Display
Resources:
Abstract
598TiP - Exploration of aumolertinib in first-line treatment for advanced non-small cell lung cancer patients of performance status 3 with EGFR mutations (19del and L858R)
Presenter: Haiyi Deng
Session: Poster Display
Resources:
Abstract
599TiP - A prospective study of savolitinib plus docetaxel in pretreated EGFR/ALK/ROS1/METex14m-wildtype advanced NSCLC patients with MET overexpression (FirstMET)
Presenter: Shuting Zhan
Session: Poster Display
Resources:
Abstract
600TiP - Phase III study of telisotuzumab vedotin (Teliso-V) vs docetaxel in pretreated c-Met overexpressing EGFR wildtype (WT) non-squamous (NSQ) locally advanced/metastatic non-small cell lung cancer (a/mNSCLC)
Presenter: Junko Tanizaki
Session: Poster Display
Resources:
Abstract
601P - Pembrolizumab in patients of Chinese descent with microsatellite instability-high/mismatch repair deficient advanced solid tumors: KEYNOTE-158
Presenter: Xiaohua Wu
Session: Poster Display
Resources:
Abstract