Abstract 159P
Background
The stromal component constitutes as much as 90% of pancreatic cancer specimens, dynamically interacting with the tumor and adapting into a pro-survival environment. This poses a clinical challenge, as biopsies often miss cancer by only sampling stroma. By leveraging AI and image analysis, we aim to extract informative cues from stromal interactions for novel cancer biomarker identification. This approach offers the potential for enhanced diagnostic precision and a deeper understanding of pancreatic cancer biology.
Methods
Anonymized digital scans of pancreatic cancer and chronic pancreatitis were sourced from the Centre Hospitalier de l’Université de Montréal. QuPath 0.4.3 aided slide annotation, with subsequent TIF annotation export. Staining normalization was performed via the Mitkovetta technique in Python. Our process involved deep-learning stromal segmentation, prioritizing >95% stromal tiles using Ilastik. Feature extraction was executed utilizing computer vision techniques (Haralick features), alongside the pre-trained and class-trained ImageNet deep-neural network, VGG16.
Results
Our annotated, normalized, automated, and 95% stroma-probability method generated for the training cohort 9829 cancer and 1638 mass-forming pancreatitis tiles, and 10776 cancer and 1211 pancreatitis tiles for the testing set. The table highlights the performance of the classical computer vision approach (Haralicks features extraction in RGB). Furthermore, transferring the ImageNet VGG-16 pre-trained model to our dataset managed to predict the presence of adjacent cancer at 86.6% accuracy. Table: 159P
Training | Validation | |||
Haralicks features | Cancer (N=9829) vs None (N=1638) | P | Cancer (N=10776) vs None (N=1211) | P |
RGB-F2 | +66% | 7.52 X 10-308 | +8.2% | 1.37 X 10-9 |
RGB-F15 | +54% | 3.28 X 10-272 | +8.5% | 8.57 X 10-11 |
RGB F37 | +9.6% | 2.35 X 10-294 | +2.7% | 5.02 X 10-36 |
Conclusions
We demonstrate that normalized stromal tiles could predict the presence of cancer accurately just by their morphological features at HE staining. This highlights the importance of stroma for diagnostic purposes and can serve as the basis for future studies through multiplex imaging and spatial transcriptomics.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
Vincent Quoc-Huy Trinh.
Funding
Fonds de Recherche Québec Santé.
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
571P - Dacomitinib in treatment-naïve EGFR-mutant NSCLC patients with multiple brain metastases: Initial efficacy and safety data from a phase II study
Presenter: Yongfeng Yu
Session: Poster Display
Resources:
Abstract
572P - Multivariable five-year survival prediction model for prognosing patients with EGFR-mutated NSCLC treated with EGFR-TKIs
Presenter: Qi-An Wang
Session: Poster Display
Resources:
Abstract
573P - LUMINATE-103: Real-world treatment patterns and outcomes of patients (pts) with epidermal growth factor receptor mutant (EGFR MU), non-squamous (NSQ) locally advanced/metastatic non-small cell lung cancer (a/mNSCLC): Pooled analysis of large US electronic health record (EHR) datasets
Presenter: Byoung Chul Cho
Session: Poster Display
Resources:
Abstract
574P - Efficacy and safety of dacomitinib in treatment-naïve patients with advanced NSCLC harboring uncommon EGFR mutations
Presenter: Lin Wu
Session: Poster Display
Resources:
Abstract
575P - Efficacy and safety of dacomitinib in treatment-naïve patients with advanced NSCLC and brain metastasis: A multicenter cohort study
Presenter: Puyuan Xing
Session: Poster Display
Resources:
Abstract
576P - Clonality of both EGFR and co-occurring TP53 mutations affect the treatment efficacy of the third-generation EGFR-TKIs in advanced-stage EGFR-mutant non-small cell lung cancer
Presenter: Wen Feng Fang
Session: Poster Display
Resources:
Abstract
577P - A study of the efficacy and safety of amivantamab in EGFR exon 20 insertion (E20I) mutations in NSCLC
Presenter: Daeho Choi
Session: Poster Display
Resources:
Abstract
578P - Tyrosine kinase inhibitor treatment of elderly patients with epidermal growth factor receptor mutated advanced non-small cell lung cancer: A multi-institute retrospective study
Presenter: Ling-Jen Hung
Session: Poster Display
Resources:
Abstract
579P - Real-world study of dacomitinib as first-line treatment for patients with EGFR-mutant non-small cell lung cancer
Presenter: Ji Eun Shin
Session: Poster Display
Resources:
Abstract
580P - Efficacy and safety of dacomitinib as first-line treatment for advanced non-small cell lung cancer (NSCLC) patients with epidermal growth factor receptor <italic>(EGFR)</italic> 21L858R mutation: A multicenter, ambispective, consecutive case-series study
Presenter: Shouzheng Wang
Session: Poster Display
Resources:
Abstract