Abstract 159P
Background
The stromal component constitutes as much as 90% of pancreatic cancer specimens, dynamically interacting with the tumor and adapting into a pro-survival environment. This poses a clinical challenge, as biopsies often miss cancer by only sampling stroma. By leveraging AI and image analysis, we aim to extract informative cues from stromal interactions for novel cancer biomarker identification. This approach offers the potential for enhanced diagnostic precision and a deeper understanding of pancreatic cancer biology.
Methods
Anonymized digital scans of pancreatic cancer and chronic pancreatitis were sourced from the Centre Hospitalier de l’Université de Montréal. QuPath 0.4.3 aided slide annotation, with subsequent TIF annotation export. Staining normalization was performed via the Mitkovetta technique in Python. Our process involved deep-learning stromal segmentation, prioritizing >95% stromal tiles using Ilastik. Feature extraction was executed utilizing computer vision techniques (Haralick features), alongside the pre-trained and class-trained ImageNet deep-neural network, VGG16.
Results
Our annotated, normalized, automated, and 95% stroma-probability method generated for the training cohort 9829 cancer and 1638 mass-forming pancreatitis tiles, and 10776 cancer and 1211 pancreatitis tiles for the testing set. The table highlights the performance of the classical computer vision approach (Haralicks features extraction in RGB). Furthermore, transferring the ImageNet VGG-16 pre-trained model to our dataset managed to predict the presence of adjacent cancer at 86.6% accuracy. Table: 159P
Training | Validation | |||
Haralicks features | Cancer (N=9829) vs None (N=1638) | P | Cancer (N=10776) vs None (N=1211) | P |
RGB-F2 | +66% | 7.52 X 10-308 | +8.2% | 1.37 X 10-9 |
RGB-F15 | +54% | 3.28 X 10-272 | +8.5% | 8.57 X 10-11 |
RGB F37 | +9.6% | 2.35 X 10-294 | +2.7% | 5.02 X 10-36 |
Conclusions
We demonstrate that normalized stromal tiles could predict the presence of cancer accurately just by their morphological features at HE staining. This highlights the importance of stroma for diagnostic purposes and can serve as the basis for future studies through multiplex imaging and spatial transcriptomics.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
Vincent Quoc-Huy Trinh.
Funding
Fonds de Recherche Québec Santé.
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
551P - Real-world incidence and outcomes of immune-related adverse events in NSCLC patients
Presenter: Andrea Knox
Session: Poster Display
Resources:
Abstract
552P - TROPION-Lung05: Datopotamab deruxtecan (Dato-DXd) in Asian patients (pts) with previously treated non-small cell lung cancer (NSCLC) with actionable genomic alterations (AGAs)
Presenter: Yasushi Goto
Session: Poster Display
Resources:
Abstract
553P - Preceding plasma EGFR vs upfront tissue NGS for advanced NSCLC in the Chinese population: A single centre experience in Hong Kong
Presenter: Janet Du
Session: Poster Display
Resources:
Abstract
554P - Comparison of the analytical performance of endobronchial ultrasound-guided transbronchial needle aspiration and other sampling methods for the Oncomine Dx target test: An observational study
Presenter: Kazuhito Miyazaki
Session: Poster Display
Resources:
Abstract
555P - Quality of life in patients with stage IV non-small cell lung cancer and the influence of druggable mutations over time: A prospective, territory-wide study in Hong Kong
Presenter: Jason C S Ho
Session: Poster Display
Resources:
Abstract
556P - Results from the phase I study on efficacy and safety of iruplinalkib (WX-0593) for anaplastic lymphoma kinase (ALK)-positive advanced non-small cell lung cancer (NSCLC) patients who received prior second-generation ALK tyrosine kinase inhibitors (TKIs)
Presenter: xuezhi Hao
Session: Poster Display
Resources:
Abstract
557P - Longitudinal plasma proteomic profiling of EML4-ALK positive lung cancer receiving ALK-TKIs therapy
Presenter: Shasha Wang
Session: Poster Display
Resources:
Abstract
558P - Treatment duration and adherence of brigatinib as second-line treatment after crizotinib for ALK+ NSCLC in South Korea
Presenter: Jeong Eun Lee
Session: Poster Display
Resources:
Abstract
559P - Comprehensive survey of AACR GENIE database revealed a wide range of TMB distribution among all three classes (I, II, III) of BRAF mutated NSCLC
Presenter: Zhaohui Arter
Session: Poster Display
Resources:
Abstract
560P - Triple-targeted therapy of dabrafenib, trametinib and osimertinib for the treatment of acquired BRAF V600E mutation after progression on EGFR-TKIs in advanced EGFR-mutant NSCLC
Presenter: Chengdi Weng
Session: Poster Display
Resources:
Abstract