Abstract 159P
Background
The stromal component constitutes as much as 90% of pancreatic cancer specimens, dynamically interacting with the tumor and adapting into a pro-survival environment. This poses a clinical challenge, as biopsies often miss cancer by only sampling stroma. By leveraging AI and image analysis, we aim to extract informative cues from stromal interactions for novel cancer biomarker identification. This approach offers the potential for enhanced diagnostic precision and a deeper understanding of pancreatic cancer biology.
Methods
Anonymized digital scans of pancreatic cancer and chronic pancreatitis were sourced from the Centre Hospitalier de l’Université de Montréal. QuPath 0.4.3 aided slide annotation, with subsequent TIF annotation export. Staining normalization was performed via the Mitkovetta technique in Python. Our process involved deep-learning stromal segmentation, prioritizing >95% stromal tiles using Ilastik. Feature extraction was executed utilizing computer vision techniques (Haralick features), alongside the pre-trained and class-trained ImageNet deep-neural network, VGG16.
Results
Our annotated, normalized, automated, and 95% stroma-probability method generated for the training cohort 9829 cancer and 1638 mass-forming pancreatitis tiles, and 10776 cancer and 1211 pancreatitis tiles for the testing set. The table highlights the performance of the classical computer vision approach (Haralicks features extraction in RGB). Furthermore, transferring the ImageNet VGG-16 pre-trained model to our dataset managed to predict the presence of adjacent cancer at 86.6% accuracy. Table: 159P
Training | Validation | |||
Haralicks features | Cancer (N=9829) vs None (N=1638) | P | Cancer (N=10776) vs None (N=1211) | P |
RGB-F2 | +66% | 7.52 X 10-308 | +8.2% | 1.37 X 10-9 |
RGB-F15 | +54% | 3.28 X 10-272 | +8.5% | 8.57 X 10-11 |
RGB F37 | +9.6% | 2.35 X 10-294 | +2.7% | 5.02 X 10-36 |
Conclusions
We demonstrate that normalized stromal tiles could predict the presence of cancer accurately just by their morphological features at HE staining. This highlights the importance of stroma for diagnostic purposes and can serve as the basis for future studies through multiplex imaging and spatial transcriptomics.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
Vincent Quoc-Huy Trinh.
Funding
Fonds de Recherche Québec Santé.
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
228P - Real-world data on dose adjustment of cabozantinib in advanced renal cell carcinoma
Presenter: Hemavathi Baskarane
Session: Poster Display
Resources:
Abstract
229P - The application of diffusion kurtosis imaging in predicting muscle invasion of bladder cancer: A comparison with conventional DWI
Presenter: Shuai Jiang
Session: Poster Display
Resources:
Abstract
230P - Oncological outcomes between partial cystectomy and radical cystectomy in solitary muscle invasive bladder cancer with downgraded T stage
Presenter: Ming Wei Hsu
Session: Poster Display
Resources:
Abstract
231P - BMI-predicted progression-free survival after pembrolizumab therapy for urothelial cancer: Asian version of BMI classification is suitable for Asian patients
Presenter: mirii harada
Session: Poster Display
Resources:
Abstract
232P - The immunosuppressive features of the 20S Proteasome β-subunit gene family in von Hippel-Lindau (VHL)-mutated clear cell renal cell carcinoma (ccRCC): A TCGA-based bioinformatics study
Presenter: Saja Alzghoul
Session: Poster Display
Resources:
Abstract
233P - The crosstalk between PBRM1 loss and tumor immune microenvironment (TIME) of clear cell renal cell carcinoma (ccRCC): A possible interconnection to immunotherapy response
Presenter: Ahmed Al Sharie
Session: Poster Display
Resources:
Abstract
235P - Do FGFR2 and 3 proteins have a role in the prognosis of urothelial bladder carcinoma?
Presenter: Alshimaa Al Hanafy
Session: Poster Display
Resources:
Abstract
236P - The effects of chemotherapy on body composition in patients with advanced urothelial carcinoma
Presenter: KOSUKE KITAMURA
Session: Poster Display
Resources:
Abstract
237P - Real-world analysis of adjuvant nivolumab in resected urothelial cancer: A single institute study in Taiwanese patients
Presenter: Mu-Hsin Chang
Session: Poster Display
Resources:
Abstract
238P - Enfortumab-vedotin for metastatic urothelial carcinoma refractory to platinum-based chemotherapy and immune checkpoint inhibitors: A single institution experience
Presenter: Yuki Endo
Session: Poster Display
Resources:
Abstract