Abstract 159P
Background
The stromal component constitutes as much as 90% of pancreatic cancer specimens, dynamically interacting with the tumor and adapting into a pro-survival environment. This poses a clinical challenge, as biopsies often miss cancer by only sampling stroma. By leveraging AI and image analysis, we aim to extract informative cues from stromal interactions for novel cancer biomarker identification. This approach offers the potential for enhanced diagnostic precision and a deeper understanding of pancreatic cancer biology.
Methods
Anonymized digital scans of pancreatic cancer and chronic pancreatitis were sourced from the Centre Hospitalier de l’Université de Montréal. QuPath 0.4.3 aided slide annotation, with subsequent TIF annotation export. Staining normalization was performed via the Mitkovetta technique in Python. Our process involved deep-learning stromal segmentation, prioritizing >95% stromal tiles using Ilastik. Feature extraction was executed utilizing computer vision techniques (Haralick features), alongside the pre-trained and class-trained ImageNet deep-neural network, VGG16.
Results
Our annotated, normalized, automated, and 95% stroma-probability method generated for the training cohort 9829 cancer and 1638 mass-forming pancreatitis tiles, and 10776 cancer and 1211 pancreatitis tiles for the testing set. The table highlights the performance of the classical computer vision approach (Haralicks features extraction in RGB). Furthermore, transferring the ImageNet VGG-16 pre-trained model to our dataset managed to predict the presence of adjacent cancer at 86.6% accuracy. Table: 159P
Training | Validation | |||
Haralicks features | Cancer (N=9829) vs None (N=1638) | P | Cancer (N=10776) vs None (N=1211) | P |
RGB-F2 | +66% | 7.52 X 10-308 | +8.2% | 1.37 X 10-9 |
RGB-F15 | +54% | 3.28 X 10-272 | +8.5% | 8.57 X 10-11 |
RGB F37 | +9.6% | 2.35 X 10-294 | +2.7% | 5.02 X 10-36 |
Conclusions
We demonstrate that normalized stromal tiles could predict the presence of cancer accurately just by their morphological features at HE staining. This highlights the importance of stroma for diagnostic purposes and can serve as the basis for future studies through multiplex imaging and spatial transcriptomics.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
Vincent Quoc-Huy Trinh.
Funding
Fonds de Recherche Québec Santé.
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
271P - Prostate cancer with histone modifier UTX mutations can benefit from olaparib
Presenter: NOBUHITO MURAMOTO
Session: Poster Display
Resources:
Abstract
272P - Comparison between MRI-targeted and standard biopsy for prostate cancer detection: A systematic review and meta-analysis
Presenter: Andree Kurniawan
Session: Poster Display
Resources:
Abstract
273P - The diagnostic performance of cognitive MRI-targeted biopsy in biopsy-naïve patients undergoing systematic 14-region 18-core biopsy: Do the three areas affect the results?
Presenter: Yuka Toyama
Session: Poster Display
Resources:
Abstract
274P - Index tumor location influencing early biochemical recurrence after radical prostatectomy in patients with negative surgical margins
Presenter: Jun Akatsuka
Session: Poster Display
Resources:
Abstract
275P - Prognosis of metastatic castration-resistant prostate cancer in response to chemotherapy and PSMA expression in circulating tumor cells
Presenter: Naoya Nagaya
Session: Poster Display
Resources:
Abstract
276P - Prognostic significance of p53 mutation in metastatic hormone-sensitive prostate cancer
Presenter: Lakshmi Kamala
Session: Poster Display
Resources:
Abstract
277P - Vasohibin-1 expression as a biomarker of aggressive growth in prostate ductal adenocarcinoma
Presenter: Murad Salomov
Session: Poster Display
Resources:
Abstract
278P - Full-coverage radiotherapy for prostate cancer patients with oligometastases
Presenter: Bichun Xu
Session: Poster Display
Resources:
Abstract
279P - Hypofractionated radiotherapy protocol implementation and early outcomes for prostate cancer patients: A single institution retrospective review
Presenter: Thu Nguyen
Session: Poster Display
Resources:
Abstract
280P - Radium-223 for patients with metastatic castration-resistant prostate cancer with symptomatic bone metastases progressing after first-line abiraterone or enzalutamide: One institutional experience
Presenter: Keng Man Chiang
Session: Poster Display
Resources:
Abstract