Abstract 159P
Background
The stromal component constitutes as much as 90% of pancreatic cancer specimens, dynamically interacting with the tumor and adapting into a pro-survival environment. This poses a clinical challenge, as biopsies often miss cancer by only sampling stroma. By leveraging AI and image analysis, we aim to extract informative cues from stromal interactions for novel cancer biomarker identification. This approach offers the potential for enhanced diagnostic precision and a deeper understanding of pancreatic cancer biology.
Methods
Anonymized digital scans of pancreatic cancer and chronic pancreatitis were sourced from the Centre Hospitalier de l’Université de Montréal. QuPath 0.4.3 aided slide annotation, with subsequent TIF annotation export. Staining normalization was performed via the Mitkovetta technique in Python. Our process involved deep-learning stromal segmentation, prioritizing >95% stromal tiles using Ilastik. Feature extraction was executed utilizing computer vision techniques (Haralick features), alongside the pre-trained and class-trained ImageNet deep-neural network, VGG16.
Results
Our annotated, normalized, automated, and 95% stroma-probability method generated for the training cohort 9829 cancer and 1638 mass-forming pancreatitis tiles, and 10776 cancer and 1211 pancreatitis tiles for the testing set. The table highlights the performance of the classical computer vision approach (Haralicks features extraction in RGB). Furthermore, transferring the ImageNet VGG-16 pre-trained model to our dataset managed to predict the presence of adjacent cancer at 86.6% accuracy. Table: 159P
Training | Validation | |||
Haralicks features | Cancer (N=9829) vs None (N=1638) | P | Cancer (N=10776) vs None (N=1211) | P |
RGB-F2 | +66% | 7.52 X 10-308 | +8.2% | 1.37 X 10-9 |
RGB-F15 | +54% | 3.28 X 10-272 | +8.5% | 8.57 X 10-11 |
RGB F37 | +9.6% | 2.35 X 10-294 | +2.7% | 5.02 X 10-36 |
Conclusions
We demonstrate that normalized stromal tiles could predict the presence of cancer accurately just by their morphological features at HE staining. This highlights the importance of stroma for diagnostic purposes and can serve as the basis for future studies through multiplex imaging and spatial transcriptomics.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
Vincent Quoc-Huy Trinh.
Funding
Fonds de Recherche Québec Santé.
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
174P - Unlocking the potential of blood-based biomarkers in pancreatic cancer for early detection and therapeutic screening
Presenter: Belinda Lee
Session: Poster Display
Resources:
Abstract
175P - Genomic evolution of peritoneal metastasis in gastric adenocarcinoma
Presenter: Lan Tu
Session: Poster Display
Resources:
Abstract
176P - Identification of novel diagnostic markers for pancreatic neuroendocrine tumors by proteomics with patient blood
Presenter: HEE SEON Kim
Session: Poster Display
Resources:
Abstract
177P - Burden of stomach cancer attributable to smoking in South Asia from 1990-2019, its projection of deaths to 2040: A benchmarking and comparative analysis
Presenter: Pranay Vaghela
Session: Poster Display
Resources:
Abstract
178P - Survival benefit of splenic hilar lymph nodes (no.10) dissection in B4 type gastric carcinoma: An IPTW propensity score analysis of large multi-institutional data
Presenter: Oh Jeong
Session: Poster Display
Resources:
Abstract
179P - The impact of pre-operative nutritional/rehabilitative assessments and support on postoperative outcomes in very elderly gastric cancer patients
Presenter: Yuki Ushimaru
Session: Poster Display
Resources:
Abstract
180P - Appraisal of surgical outcomes and oncological efficiency of intraoperative adverse events in robotic radical gastrectomy for gastric cancer
Presenter: shangguan Zhixin
Session: Poster Display
Resources:
Abstract
181P - TQB2450 (PD-L1 blockade) in combination with anlotinib as a perioperative treatment for patients with hepatocellular carcinoma at high risk of recurrence: Primary results from a prospective, single-arm, phase Ib study
Presenter: Zhen Huang
Session: Poster Display
Resources:
Abstract
182P - Cytoreductive surgery and chemotherapy in metastatic gastric adenocarcinoma: A population-based study
Presenter: Dana Al Zamer
Session: Poster Display
Resources:
Abstract
183P - Final analysis of phase II clinical study evaluating the safety and effectiveness of neoadjuvant S-1 + oxaliplatin combination therapy for older patients with locally advanced gastric cancer
Presenter: Eiji Oki
Session: Poster Display
Resources:
Abstract