Abstract 159P
Background
The stromal component constitutes as much as 90% of pancreatic cancer specimens, dynamically interacting with the tumor and adapting into a pro-survival environment. This poses a clinical challenge, as biopsies often miss cancer by only sampling stroma. By leveraging AI and image analysis, we aim to extract informative cues from stromal interactions for novel cancer biomarker identification. This approach offers the potential for enhanced diagnostic precision and a deeper understanding of pancreatic cancer biology.
Methods
Anonymized digital scans of pancreatic cancer and chronic pancreatitis were sourced from the Centre Hospitalier de l’Université de Montréal. QuPath 0.4.3 aided slide annotation, with subsequent TIF annotation export. Staining normalization was performed via the Mitkovetta technique in Python. Our process involved deep-learning stromal segmentation, prioritizing >95% stromal tiles using Ilastik. Feature extraction was executed utilizing computer vision techniques (Haralick features), alongside the pre-trained and class-trained ImageNet deep-neural network, VGG16.
Results
Our annotated, normalized, automated, and 95% stroma-probability method generated for the training cohort 9829 cancer and 1638 mass-forming pancreatitis tiles, and 10776 cancer and 1211 pancreatitis tiles for the testing set. The table highlights the performance of the classical computer vision approach (Haralicks features extraction in RGB). Furthermore, transferring the ImageNet VGG-16 pre-trained model to our dataset managed to predict the presence of adjacent cancer at 86.6% accuracy. Table: 159P
Training | Validation | |||
Haralicks features | Cancer (N=9829) vs None (N=1638) | P | Cancer (N=10776) vs None (N=1211) | P |
RGB-F2 | +66% | 7.52 X 10-308 | +8.2% | 1.37 X 10-9 |
RGB-F15 | +54% | 3.28 X 10-272 | +8.5% | 8.57 X 10-11 |
RGB F37 | +9.6% | 2.35 X 10-294 | +2.7% | 5.02 X 10-36 |
Conclusions
We demonstrate that normalized stromal tiles could predict the presence of cancer accurately just by their morphological features at HE staining. This highlights the importance of stroma for diagnostic purposes and can serve as the basis for future studies through multiplex imaging and spatial transcriptomics.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
Vincent Quoc-Huy Trinh.
Funding
Fonds de Recherche Québec Santé.
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
251P - LDH isozyme as a prognostic factor for patients with metastatic clear cell renal cell carcinoma (mCRCC)
Presenter: Hayato Takeda
Session: Poster Display
Resources:
Abstract
252P - Risk factors for recurrence after curative nephrectomy in non-metastatic renal cell carcinoma: A retrospective cohort study
Presenter: Kristine Tejada
Session: Poster Display
Resources:
Abstract
253TiP - WUTSUP-02-II-Neo-Dis-Tis: Investigating the efficacy and safety of neoadjuvant tislelizumab plus disitamab vedotin with adjuvant tislelizumab in upper urinary tract carcinoma: A phase II multi-center study
Presenter: Yige Bao
Session: Poster Display
Resources:
Abstract
254TiP - Prospective observational trial of cabozantinib plus nivolumab in Japanese patients with advanced or metastatic renal cell carcinoma: JACUMET trial
Presenter: Yuji Miura
Session: Poster Display
Resources:
Abstract
264P - Interim results from a phase I study of AMG 509 (xaluritamig), a STEAP1 x CD3 XmAb 2+1 immune therapy in patients with metastatic castration-resistant prostate cancer (mCRPC)
Presenter: Chia-Chi Lin
Session: Poster Display
Resources:
Abstract
266P - Clinical application and potential impact of liquid biopsy on the management of Chinese patients with metastatic castration-resistant prostate cancer (mCRPC): A territory-wide prospective analysis
Presenter: Wai Kay Philip Kwong
Session: Poster Display
Resources:
Abstract
267P - Exploring homologous recombination deficiency threshold for predicting response to PARP inhibitor in prostate cancer
Presenter: Diwei Zhao
Session: Poster Display
Resources:
Abstract
268P - Comparisons of on new-onset prostate cancer in type 2 diabetes mellitus exposed to the SGLT2I and DPP4I: A population-based cohort study
Presenter: Hou In Chou
Session: Poster Display
Resources:
Abstract
269P - Prostate cancer harboring low COMT expression correlates with a poor prognosis and response to enzalutamide
Presenter: Shigekatsu Maekawa
Session: Poster Display
Resources:
Abstract
270P - Germline BRCA1/2 pathogenic variants in Japanese patients with prostate cancer are predictive factors for androgen receptor-axis-targeted therapy or chemotherapy for castration-resistant prostate cancer
Presenter: Shigekatsu Maekawa
Session: Poster Display
Resources:
Abstract