Abstract 204P
Background
Although neoadjuvant chemoradiotherapy followed by surgery is the standard treatment for esophageal cancer patients, most patients are unable to achieve pathological complete response with neoadjuvant therapy, resulting in poor outcomes. The aim of this study is to develop a method for selecting patients who can achieve pathological complete response through pre-neoadjuvant therapy chest-enhanced CT scans.
Methods
Two hundreds and one patients with esophageal cancer were enrolled and divided into a training set and a testing set in a 7:3 ratio. Radiomics features of intra-tumoral and peritumoral images were extracted from preoperative chest-enhanced CT scans of these patients. The features were dimensionally reduced in two steps. The selected intra-tumoral and peritumoral features, including marginal (with a distance of 0-3mm from the tumor) and adjacent (with a distance of 3-6mm from the tumor) ROI, were used to build models with four machine learning classifiers, including Support Vector Machine, XG-Boost, Random Forest and Naive Bayes. Models with satisfied accuracy and stability levels were considered to perform well. Finally, the performance of these well-performing models on the testing set was displayed using ROC curves.
Results
Among the 16 models, the best-performing models were the integrated (intra-tumoral and peritumoral features)-XGBoost and integrated-random forest models, which had average ROC AUCs of 0.906 and 0.918, respectively, with relative standard deviations (RSDs) of 6.26 and 6.89 in the training set. In the testing set, the AUCs were 0.845 and 0.871, respectively. There was no significant difference in the ROC curves between the two models. Table: 204P
The performance of the selected models on the testing set
Model | AUC (95% CI) | Specificity | Sensitivity |
Integrated-XGBoost | 0.845 (0.764, 0.928) | 0.864 | 0.777 |
Original-XGBoost | 0.759 (0.660, 0.857) | 0.900 | 0.592 |
Integrated-Random Forest | 0.871 (0.796, 0.946) | 0.682 | 0.933 |
Original-Random Forest | 0.795 (0.703, 0.887) | 0.825 | 0.673 |
Adjacent-Random Forest | 0.769 (0.671, 0.868) | 0.886 | 0.533 |
Integrated-Support Vector Machine | 0.719 (0.613, 0.825) | 0.795 | 0.622 |
Conclusions
The addition of peritumoral radiomics features to the radiomics analysis may improve the predictive performance of pathological response for esophageal cancer patients to neoadjuvant chemoradiotherapy.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
The authors.
Funding
Has not received any funding.
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
613P - Differences in the interactions with pharmaceutical companies between medical oncologists and infectious diseases physicians
Presenter: Hui Ling Yeoh
Session: Poster Display
Resources:
Abstract
614P - The role of PD-L1 expression in prognosis of osteosarcoma patients: A systematic review and meta-analysis
Presenter: Alexander Purnomo
Session: Poster Display
Resources:
Abstract
615P - Pulmonary resectable metastases of osteosarcoma with apatinib and chemotherapy (PROACH): An open-label, single-arm phase II clinical trial
Presenter: Qiyuan Bao
Session: Poster Display
Resources:
Abstract
616P - Incidence of cardiotoxicity after high cumulative dose of anthracyclines in adult patients with advanced soft tissue sarcomas: A systematic review and meta-analysis
Presenter: Paula Franco
Session: Poster Display
Resources:
Abstract
617P - The risk of acute myeloid leukaemia in patients with Ewing's sarcoma and trend analysis: A SEER-based study 2000-2020
Presenter: Mohamed Abdalla
Session: Poster Display
Resources:
Abstract
618P - Adult renal Ewing’s sarcoma/primitive neuroectodermal tumor: A 20-year retrospective review of molecular histopathological profiles, and clinical outcomes
Presenter: Josh Thomas Georgy
Session: Poster Display
Resources:
Abstract
619P - Single-cell and bulk RNA-seq analyses decode the renal microenvironment induced by polystyrene microplastics in mice receiving high-fat diet
Presenter: Wangrui Liu
Session: Poster Display
Resources:
Abstract
620P - A unique circulating microRNA pairs signature serves as a superior tool for early diagnosis of pan-cancer
Presenter: Dongyu Li
Session: Poster Display
Resources:
Abstract
621P - Effective identification of primary liver cancer from cirrhosis or chronic hepatitis virus infection using eight methylated plasma DNA markers: Marker discovery, phase I pilot, and phase II clinical validation
Presenter: Tian Yang
Session: Poster Display
Resources:
Abstract
622P - A prognostic and immune infiltration analysis of CCL26 in pan-cancer
Presenter: Mengyue Li
Session: Poster Display
Resources:
Abstract