Abstract 620P
Background
Cancer constitutes a major burden to global health and the critical role of early diagnosis for cancer management is self-evident. Even though various miRNA-based signatures have been developed, their clinical utilization is limited due to various reasons. In this article, we innovatively developed a signature based on pairwise expression of miRNAs (miRPs) for pan-cancer diagnosis using machine learning approach.
Methods
miRNA spectrum of 15832 patients with 13 different cancers from 10 cohorts were analyzed. 15148 patients were divided into training, validation, and test sets with a ratio of 7:2:1, while 648 patients were utilized as external test. Pairwise comparison was performed to generate miRP score, defined by the comparison between two miRNAs, in training set. Five different machine-learning (ML) algorithms (XGBoost, SVM, RandomForest, LASSO, and Logistic) were adopted for signature construction. The best ML algorithm and the optimal number of miRPs included were identified using AUC and youden index in validation. Performance of the ideal model was evaluated in test and external set based on AUC, Youden index, positive predictive value (PPV), negative predictive value (NPV), sensitivity, specificity, and accuracy. The AUC of entire cohorts was compared to previously published 25 signatures.
Results
The Random Forest approach including 31 miRPs (31-miRP) outperformed others and was retained for further evaluation. The AUC of 31-miRP ranges 0.980-1.000 in different set. Remarkably, 31-miRP exhibited advantages in differentiating different cancers from normal tissues. Moreover, 31-miRP demonstrate superiorities in detecting early-stage cancers, with AUC ranging from 0.961-0.998. Compared to previously published 25 different signatures, 31-miRP also demonstrated clear advantages. Remarkably, 31-miRP also exhibited promising capabilities in differentiating cancers from corresponding benign lesions.
Conclusions
The 31-miRP exhibited outstanding diagnostic performance, characterized by high accuracy and sensitivity, thereby holding potential as a reliable tool for cancer diagnosis at early stage. Nevertheless, its effectiveness still warrants further investigation in real-world setting in future.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
The authors.
Funding
CAMS Innovation Fund for Medical Sciences (No.2021-I2M-1-050); National Natural Science Foundation for Young Scientists of China (No. 82203025).
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
5P - Clinicopathologic features and genomic profiling of occult breast cancer
Presenter: Liansha Tang
Session: Poster Display
Resources:
Abstract
6P - Tumor cell-released autophagosomes (TRAPs) promote lung metastasis through inducing PD-L1 high expression of pulmonary vascular endothelial cells (PVECs) in breast cancer
Presenter: Xuru Wang
Session: Poster Display
Resources:
Abstract
7P - Tumor cell-released autophagosomes (TRAPs) promote breast cancer lung metastasis by modulating neutrophil extracellular traps formation
Presenter: Xiaohe Zhou
Session: Poster Display
Resources:
Abstract
9P - Clinicopathological features and prognosis of mucinous breast cancer: A retrospective analysis of 358 patients in Vietnam
Presenter: Hoai Hoang
Session: Poster Display
Resources:
Abstract
10P - Comparison of 28-gene and 70-gene panel in risk-prediction of Chinese women with early-stage HR-positive and HER2-negative breast cancer
Presenter: Lei Lei
Session: Poster Display
Resources:
Abstract
11P - Multimodal analysis of methylation and fragmentomic profiles in plasma cell-free DNA for differentiation of benign and malignant breast tumors
Presenter: Hanh Nguyen
Session: Poster Display
Resources:
Abstract
12P - Plasma cell-free mRNA profiles enable early detection of breast cancer
Presenter: Chi Nguyen
Session: Poster Display
Resources:
Abstract
13P - Relationship of distress and quality of life with gut microbiome composition in newly diagnosed breast cancer patients: A prospective, observational study
Presenter: Chi-Chan Lee
Session: Poster Display
Resources:
Abstract
14P - Classification of molecular subtypes of breast cancer in whole-slide histopathological images using a novel deep learning algorithm
Presenter: Hyung Suk Kim
Session: Poster Display
Resources:
Abstract
15P - The regulation of pregnenolone in breast cancer
Presenter: Hyeon-Gu Kang
Session: Poster Display
Resources:
Abstract