Abstract 204P
Background
Although neoadjuvant chemoradiotherapy followed by surgery is the standard treatment for esophageal cancer patients, most patients are unable to achieve pathological complete response with neoadjuvant therapy, resulting in poor outcomes. The aim of this study is to develop a method for selecting patients who can achieve pathological complete response through pre-neoadjuvant therapy chest-enhanced CT scans.
Methods
Two hundreds and one patients with esophageal cancer were enrolled and divided into a training set and a testing set in a 7:3 ratio. Radiomics features of intra-tumoral and peritumoral images were extracted from preoperative chest-enhanced CT scans of these patients. The features were dimensionally reduced in two steps. The selected intra-tumoral and peritumoral features, including marginal (with a distance of 0-3mm from the tumor) and adjacent (with a distance of 3-6mm from the tumor) ROI, were used to build models with four machine learning classifiers, including Support Vector Machine, XG-Boost, Random Forest and Naive Bayes. Models with satisfied accuracy and stability levels were considered to perform well. Finally, the performance of these well-performing models on the testing set was displayed using ROC curves.
Results
Among the 16 models, the best-performing models were the integrated (intra-tumoral and peritumoral features)-XGBoost and integrated-random forest models, which had average ROC AUCs of 0.906 and 0.918, respectively, with relative standard deviations (RSDs) of 6.26 and 6.89 in the training set. In the testing set, the AUCs were 0.845 and 0.871, respectively. There was no significant difference in the ROC curves between the two models. Table: 204P
The performance of the selected models on the testing set
Model | AUC (95% CI) | Specificity | Sensitivity |
Integrated-XGBoost | 0.845 (0.764, 0.928) | 0.864 | 0.777 |
Original-XGBoost | 0.759 (0.660, 0.857) | 0.900 | 0.592 |
Integrated-Random Forest | 0.871 (0.796, 0.946) | 0.682 | 0.933 |
Original-Random Forest | 0.795 (0.703, 0.887) | 0.825 | 0.673 |
Adjacent-Random Forest | 0.769 (0.671, 0.868) | 0.886 | 0.533 |
Integrated-Support Vector Machine | 0.719 (0.613, 0.825) | 0.795 | 0.622 |
Conclusions
The addition of peritumoral radiomics features to the radiomics analysis may improve the predictive performance of pathological response for esophageal cancer patients to neoadjuvant chemoradiotherapy.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
The authors.
Funding
Has not received any funding.
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
561P - Mechanisms of osimertinib resistance using circulating tumor DNA analyses for EGFR-mutated non-small cell lung cancer, results from ELUCIDATOR: A prospective observational multicenter study
Presenter: Daijiro Harada
Session: Poster Display
Resources:
Abstract
562P - First-line (1L) osimertinib (osi) ± platinum-pemetrexed in patients (pts) with EGFRm advanced NSCLC: FLAURA2 China cohort
Presenter: Yan Yu
Session: Poster Display
Resources:
Abstract
563P - Real-world effectiveness and safety of first-line osimertinib for EGFR-mutated advanced NSCLC in China (FLOURISH study)
Presenter: Jianya Zhou
Session: Poster Display
Resources:
Abstract
564P - Co-occurring EGFR p.E709X mutation affects the treatment response to the third-generation EGFR-TKIs in EGFR p.G719X-mutant patients with advanced NSCLC
Presenter: Wen Feng Fang
Session: Poster Display
Resources:
Abstract
565P - Genome-guided targeted therapy combination improves survival in patients with advanced EGFR mutation positive NSCLC failing osimertinib
Presenter: Molly Li
Session: Poster Display
Resources:
Abstract
566P - Safety of tepotinib + osimertinib in EGFR-mutant NSCLC with MET amplification after first-line osimertinib
Presenter: Chong Kin Liam
Session: Poster Display
Resources:
Abstract
567P - Furmonertinib in combination with bevacizumab and intrathecal chemotherapy as later-line re-challenge treatment in EGFR –mutated NSCLC patients with leptomeningeal metastasis after third-generation EGFR-TKIs treatment failure
Presenter: Fang Cun
Session: Poster Display
Resources:
Abstract
568P - First-line (1L) osimertinib + platinum-pemetrexed in EGFR-mutated (EGFRm) advanced NSCLC: Updated FLAURA2 safety run-in (SRI) results
Presenter: David Planchard
Session: Poster Display
Resources:
Abstract
569P - Whole-transcriptome sequencing of transformed small-cell lung cancer from EGFR-mutated lung adenocarcinoma reveals LUAD–like and SCLC–like subsets
Presenter: Chan-Yuan Zhang
Session: Poster Display
Resources:
Abstract
570P - First-line osimertinib for patients with advanced NSCLC harboring EGFR mutations: A real-world study
Presenter: Wenxiang Ji
Session: Poster Display
Resources:
Abstract