Abstract 204P
Background
Although neoadjuvant chemoradiotherapy followed by surgery is the standard treatment for esophageal cancer patients, most patients are unable to achieve pathological complete response with neoadjuvant therapy, resulting in poor outcomes. The aim of this study is to develop a method for selecting patients who can achieve pathological complete response through pre-neoadjuvant therapy chest-enhanced CT scans.
Methods
Two hundreds and one patients with esophageal cancer were enrolled and divided into a training set and a testing set in a 7:3 ratio. Radiomics features of intra-tumoral and peritumoral images were extracted from preoperative chest-enhanced CT scans of these patients. The features were dimensionally reduced in two steps. The selected intra-tumoral and peritumoral features, including marginal (with a distance of 0-3mm from the tumor) and adjacent (with a distance of 3-6mm from the tumor) ROI, were used to build models with four machine learning classifiers, including Support Vector Machine, XG-Boost, Random Forest and Naive Bayes. Models with satisfied accuracy and stability levels were considered to perform well. Finally, the performance of these well-performing models on the testing set was displayed using ROC curves.
Results
Among the 16 models, the best-performing models were the integrated (intra-tumoral and peritumoral features)-XGBoost and integrated-random forest models, which had average ROC AUCs of 0.906 and 0.918, respectively, with relative standard deviations (RSDs) of 6.26 and 6.89 in the training set. In the testing set, the AUCs were 0.845 and 0.871, respectively. There was no significant difference in the ROC curves between the two models. Table: 204P
The performance of the selected models on the testing set
Model | AUC (95% CI) | Specificity | Sensitivity |
Integrated-XGBoost | 0.845 (0.764, 0.928) | 0.864 | 0.777 |
Original-XGBoost | 0.759 (0.660, 0.857) | 0.900 | 0.592 |
Integrated-Random Forest | 0.871 (0.796, 0.946) | 0.682 | 0.933 |
Original-Random Forest | 0.795 (0.703, 0.887) | 0.825 | 0.673 |
Adjacent-Random Forest | 0.769 (0.671, 0.868) | 0.886 | 0.533 |
Integrated-Support Vector Machine | 0.719 (0.613, 0.825) | 0.795 | 0.622 |
Conclusions
The addition of peritumoral radiomics features to the radiomics analysis may improve the predictive performance of pathological response for esophageal cancer patients to neoadjuvant chemoradiotherapy.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
The authors.
Funding
Has not received any funding.
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
602P - COLUMBUS 7-year update: A randomized, open-label, phase III trial of encorafenib (Enco) + binimetinib (Bini) vs vemurafenib (Vemu) or Enco in patients (Pts) with BRAF V600-mutant melanoma
Presenter: Andrew Haydon
Session: Poster Display
Resources:
Abstract
603P - An individualised postoperative radiological surveillance schedule for IDH-wildtype glioblastoma patients (HK-GBM Registry)
Presenter: Jason Chak Yan Li
Session: Poster Display
Resources:
Abstract
604P - Cabozantinib versus placebo in patients with radioiodine-refractory differentiated thyroid cancer who progressed after prior VEGFR-targeted therapy: Outcomes from COSMIC-311 by BRAF status
Presenter: Marcia Brose
Session: Poster Display
Resources:
Abstract
606P - BRAF and NRAS mutations are associated with poor prognosis in Asians with acral-lentiginous and nodular cutaneous melanoma
Presenter: Sumadi Lukman Anwar
Session: Poster Display
Resources:
Abstract
607P - Single institutional outcomes of radiotherapy and systemic therapy for melanoma brain metastases in Japan
Presenter: Naoya Yamazaki
Session: Poster Display
Resources:
Abstract
608P - The efficacy of immune checkpoint inhibitors and targeted therapy in mucosal melanomas: A systematic review and meta-analysis
Presenter: Andrea Teo
Session: Poster Display
Resources:
Abstract
609P - The association between thyroid function abnormalities and vitiligo induced by pembrolizumab regarding prognosis in patients with advanced melanoma
Presenter: Moez Mobarek
Session: Poster Display
Resources:
Abstract
610P - Analyzing the clinical benefit of the evidence presented at these congresses and utilizing a standardized scale to quantify it will significantly enhance our understanding of the studies showcased, allowing for more objective evaluation and interpretation
Presenter: Charles Jeffrey Tan
Session: Poster Display
Resources:
Abstract
611P - ESMO-magnitude of clinical benefit scale (MCBS) scores for phase III trials of adjuvant and curative therapies at the 2022 ASCO annual meeting (ASCO22)
Presenter: Thi Thao Vi Luong
Session: Poster Display
Resources:
Abstract
612P - Is the juice worth the squeeze? Overall survival gain per unit treatment time as a metric of clinical benefit of systemic treatment in incurable cancers
Presenter: Vodathi Bamunuarachchi
Session: Poster Display
Resources:
Abstract