Abstract 6P
Background
HER2-positive breast cancer accounts for approximately 15-20% of cases and often results in poor clinical outcomes. The DESTINY-Breast04 trial demonstrated that trastuzumab-deruxtecan (T-DXd) significantly improved survival in patients with immunohistochemistry (IHC) scores of 1+, and 2+ with negative in situ hybridisation (HER2-low). Consequently, accurate differentiation between scores is crucial. Manual HER2 IHC classification, however, is labour-intensive and prone to significant interobserver variability. This study evaluates the performance of artificial intelligence (AI) in distinguishing HER2 IHC scores of 0, 1+, 2+, and 3+.
Methods
We conducted searches in MEDLINE, EMBASE, Scopus, and Web of Science up to 3rd May 2024. We included original studies evaluating the performance of AI compared to pathologists' manual scoring as the reference standard in classifying HER2 IHC. Meta-analysis was performed employing the bivariate random-effects and hierarchical summary receiver operating characteristics models to estimate pooled sensitivity and specificity, and the area under the curve (AUC). Heterogeneity was assessed using the I2 Higgins’ score. Statistical analysis was carried out using Stata v17.0. The risk of bias was evaluated using QUADAS-2 tool.
Results
We evaluated the performance of 9 AI algorithms across 8 publications, covering 872 breast cancer cases (patients and images). AI demonstrated excellent overall accuracy in HER2 scoring, as evidenced by an AUC = 0.98 [95% CI 0.96-0.99]. Meta-analysis revealed a pooled sensitivity of 0.88 [95% CI 0.81-0.93] and a pooled specificity of 0.96 [95% CI 0.94-0.98]. Heterogeneity was significantly high for both metrics, with an I2 of 83.05 [95% CI 78.14-87.96] for sensitivity and 83.13 [95% CI 78.25-88.01] for specificity.
Conclusions
AI shows significant potential in aiding pathologists with accurate classification of HER2 status in breast cancer IHC samples. Variability in results may be attributed to the diverse technological tools employed in each AI algorithm. This high level of accuracy underlines AI's capability to standardise HER2 diagnosis and reduce interobserver variability in clinical practice.
Editorial acknowledgement
Clinical trial identification
Legal entity responsible for the study
D. Arruda Navarro Albuquerque.
Funding
Has not received any funding.
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
36P - Abacavir potentiates the efficacy of doxorubicin in breast cancer cells via KDM5B Inhibition
Presenter: Anmi Jose
Session: Cocktail & Poster Display session
Resources:
Abstract
37P - Identification of immune profile in advanced cutaneous squamous cell carcinoma predicting immunotherapy response
Presenter: Alfonso Esposito
Session: Cocktail & Poster Display session
Resources:
Abstract
39P - MicroRNA as a promising molecular biomarker for liquid biopsy in breast cancer
Presenter: Giorgia Vesca
Session: Cocktail & Poster Display session
Resources:
Abstract
40P - Patient-based models to study infiltration heterogeneity in gliomas
Presenter: Ivana Manini
Session: Cocktail & Poster Display session
Resources:
Abstract
42P - HER2 aberration as a potential predictive biomarker for extrapulmonary small cell neuroendocrine carcinoma
Presenter: Jiri Dvorak
Session: Cocktail & Poster Display session
Resources:
Abstract
43P - Assessment of methylation-specific genetic markers for reliable colorectal cancer detection and their potential in liquid biopsy applications
Presenter: Jiri Dvorak
Session: Cocktail & Poster Display session
Resources:
Abstract
44P - Calculated numerical karyotype with ultra low-coverage whole genome sequencing undercovers recurrent chromosomal aberrations in resectable colorectal cancer
Presenter: Thomas Samer Tarawneh
Session: Cocktail & Poster Display session
Resources:
Abstract
46P - Promising epi(genetic) biomarkers for ovarian tumor prognosis
Presenter: Ieva Vaicekauskaitė
Session: Cocktail & Poster Display session
Resources:
Abstract
47P - Integration of miRNA profiles and p53 mutations as biomarkers for predicting sensitivity and resistance to FGFR inhibitor CPL110 in cancer therapy
Presenter: Monika Skupinska
Session: Cocktail & Poster Display session
Resources:
Abstract
48P - Early cancer detection from liquid biopsy using cell-free RNA
Presenter: Joao Curado
Session: Cocktail & Poster Display session
Resources:
Abstract