Abstract 6P
Background
HER2-positive breast cancer accounts for approximately 15-20% of cases and often results in poor clinical outcomes. The DESTINY-Breast04 trial demonstrated that trastuzumab-deruxtecan (T-DXd) significantly improved survival in patients with immunohistochemistry (IHC) scores of 1+, and 2+ with negative in situ hybridisation (HER2-low). Consequently, accurate differentiation between scores is crucial. Manual HER2 IHC classification, however, is labour-intensive and prone to significant interobserver variability. This study evaluates the performance of artificial intelligence (AI) in distinguishing HER2 IHC scores of 0, 1+, 2+, and 3+.
Methods
We conducted searches in MEDLINE, EMBASE, Scopus, and Web of Science up to 3rd May 2024. We included original studies evaluating the performance of AI compared to pathologists' manual scoring as the reference standard in classifying HER2 IHC. Meta-analysis was performed employing the bivariate random-effects and hierarchical summary receiver operating characteristics models to estimate pooled sensitivity and specificity, and the area under the curve (AUC). Heterogeneity was assessed using the I2 Higgins’ score. Statistical analysis was carried out using Stata v17.0. The risk of bias was evaluated using QUADAS-2 tool.
Results
We evaluated the performance of 9 AI algorithms across 8 publications, covering 872 breast cancer cases (patients and images). AI demonstrated excellent overall accuracy in HER2 scoring, as evidenced by an AUC = 0.98 [95% CI 0.96-0.99]. Meta-analysis revealed a pooled sensitivity of 0.88 [95% CI 0.81-0.93] and a pooled specificity of 0.96 [95% CI 0.94-0.98]. Heterogeneity was significantly high for both metrics, with an I2 of 83.05 [95% CI 78.14-87.96] for sensitivity and 83.13 [95% CI 78.25-88.01] for specificity.
Conclusions
AI shows significant potential in aiding pathologists with accurate classification of HER2 status in breast cancer IHC samples. Variability in results may be attributed to the diverse technological tools employed in each AI algorithm. This high level of accuracy underlines AI's capability to standardise HER2 diagnosis and reduce interobserver variability in clinical practice.
Editorial acknowledgement
Clinical trial identification
Legal entity responsible for the study
D. Arruda Navarro Albuquerque.
Funding
Has not received any funding.
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
121P - DNA methylation co-operates with genomic alterations during non-small cell lung cancer evolution
Presenter: Nnenna Kanu
Session: Cocktail & Poster Display session
Resources:
Abstract
122P - Comprehensive multi-omics profiling identifies prognostic and predictive subtypes in renal cell carcinoma
Presenter: Sanha Park
Session: Cocktail & Poster Display session
Resources:
Abstract
123P - Copy number from ulcWGS to predict TNBC molecular subtypes in the IBCSG 22-00 trial
Presenter: Andrea Joaquin Garcia
Session: Cocktail & Poster Display session
Resources:
Abstract
124P - Targeting neoantigens in chronic lymphocytic leukemia (CLL) for personalized T cell therapy
Presenter: Gurvinder Kaur
Session: Cocktail & Poster Display session
Resources:
Abstract
125P - Detection and analysis of medulloblastoma subtype-specific copy number variations from RNA-seq data for improved risk-based subtype classification
Presenter: Ivan Martinez de Estibariz Royuela
Session: Cocktail & Poster Display session
Resources:
Abstract
126P - Genomic and transcriptomic profiles define smokers and non-smokers lung squamous cell carcinoma patients
Presenter: Matteo Canale
Session: Cocktail & Poster Display session
Resources:
Abstract
128P - Metastatic migrations in lung cancer: Insights from the PEACE autopsy programme
Presenter: Sonya Hessey
Session: Cocktail & Poster Display session
Resources:
Abstract
129P - NGS prescreening program for refractory solid tumors outside standard indications in a public network of cancer centers
Presenter: Paula Sàbat Viltró
Session: Cocktail & Poster Display session
Resources:
Abstract
130P - Transcriptomic analysis of patients with metastatic hormone-sensitive prostate cancer to identify genomic signatures involved in the transition from androgen-dependent to androgen-independent phenotype
Presenter: Giovanna Pecoraro
Session: Cocktail & Poster Display session
Resources:
Abstract
131P - Benchmarking whole exome sequencing in the German network for personalized medicine
Presenter: Michael Menzel
Session: Cocktail & Poster Display session
Resources:
Abstract