Abstract 6P
Background
HER2-positive breast cancer accounts for approximately 15-20% of cases and often results in poor clinical outcomes. The DESTINY-Breast04 trial demonstrated that trastuzumab-deruxtecan (T-DXd) significantly improved survival in patients with immunohistochemistry (IHC) scores of 1+, and 2+ with negative in situ hybridisation (HER2-low). Consequently, accurate differentiation between scores is crucial. Manual HER2 IHC classification, however, is labour-intensive and prone to significant interobserver variability. This study evaluates the performance of artificial intelligence (AI) in distinguishing HER2 IHC scores of 0, 1+, 2+, and 3+.
Methods
We conducted searches in MEDLINE, EMBASE, Scopus, and Web of Science up to 3rd May 2024. We included original studies evaluating the performance of AI compared to pathologists' manual scoring as the reference standard in classifying HER2 IHC. Meta-analysis was performed employing the bivariate random-effects and hierarchical summary receiver operating characteristics models to estimate pooled sensitivity and specificity, and the area under the curve (AUC). Heterogeneity was assessed using the I2 Higgins’ score. Statistical analysis was carried out using Stata v17.0. The risk of bias was evaluated using QUADAS-2 tool.
Results
We evaluated the performance of 9 AI algorithms across 8 publications, covering 872 breast cancer cases (patients and images). AI demonstrated excellent overall accuracy in HER2 scoring, as evidenced by an AUC = 0.98 [95% CI 0.96-0.99]. Meta-analysis revealed a pooled sensitivity of 0.88 [95% CI 0.81-0.93] and a pooled specificity of 0.96 [95% CI 0.94-0.98]. Heterogeneity was significantly high for both metrics, with an I2 of 83.05 [95% CI 78.14-87.96] for sensitivity and 83.13 [95% CI 78.25-88.01] for specificity.
Conclusions
AI shows significant potential in aiding pathologists with accurate classification of HER2 status in breast cancer IHC samples. Variability in results may be attributed to the diverse technological tools employed in each AI algorithm. This high level of accuracy underlines AI's capability to standardise HER2 diagnosis and reduce interobserver variability in clinical practice.
Editorial acknowledgement
Clinical trial identification
Legal entity responsible for the study
D. Arruda Navarro Albuquerque.
Funding
Has not received any funding.
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
105P - Subsequent treatments after progression on cyclin-dependent kinase 4/6 inhibitors: A multicentric real-world data study
Presenter: Ana Rita Freitas
Session: Cocktail & Poster Display session
Resources:
Abstract
106P - Toxicity profile antibody-drug conjugates (ADCs) in metastatic breast cancer patients: A systematic review and meta-analysis based on studies’ design
Presenter: Silvia Belloni
Session: Cocktail & Poster Display session
Resources:
Abstract
107P - Receptor change on residual disease following neoadjuvant therapies for locally advanced breast cancer fails to impact oncological and survival outcomes
Presenter: Rionagh Lynch
Session: Cocktail & Poster Display session
Resources:
Abstract
114P - Comprehensive genomic profiling by liquid biopsy captures tumor heterogeneity and identifies cancer vulnerabilities in patients with RAS/BRAFV600E wild type metastatic colorectal cancer in the CAPRI 2-GOIM trial
Presenter: Davide Ciardiello
Session: Cocktail & Poster Display session
Resources:
Abstract
115P - Impact of tissue factor on clinical and biological characteristics in patients with advanced pancreatic cancer
Presenter: Taro Shibuki
Session: Cocktail & Poster Display session
Resources:
Abstract
116P - Multiomic profiling based on <italic>Akkermansia muciniphila</italic> in advanced non-small cell lung cancer
Presenter: Lorenzo Belluomini
Session: Cocktail & Poster Display session
Resources:
Abstract
117P - Transforming public patient omic data into precision oncology targets: A comprehensive pan-cancer approach
Presenter: Eléonore Fox
Session: Cocktail & Poster Display session
Resources:
Abstract
118P - Whole transcriptome sequencing of lung tissue to combine disease classification and identification of actionable targets
Presenter: Alejandro Pallares Robles
Session: Cocktail & Poster Display session
Resources:
Abstract
119P - Genetic profiling of breast cancer in a developing country: Towards the establishment of oncogenetics in Cameroon
Presenter: Kenn Chi Ndi
Session: Cocktail & Poster Display session
Resources:
Abstract
120P - Uncovering the prognostic potential of FGFR2c isoform expression in advanced gastroesophageal cancer through MONSTAR-SCREEN-2 analysis
Presenter: Tadayoshi Hashimoto
Session: Cocktail & Poster Display session
Resources:
Abstract