Abstract 51P
Background
Challenges persist in CAR-T cell therapy for solid tumors, notably due to immune exhaustion within the tumor microenvironment. Mesothelin (MSLN) has emerged as a pivotal target for CAR-T therapy in ovarian cancer, yet overcoming functional exhaustion remains a critical hurdle. This study explores the role of lipid metabolites in modulating anti-MSLN CAR-T cell exhaustion, aiming to enhance therapeutic outcomes.
Methods
Anti-MSLN CAR-T cells were engineered to target ovarian cancer cells with high MSLN expression for in vitro and in vivo experiments. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) identified oxylipin 12-HETE as critical in CAR-T cell exhaustion. High-throughput virtual screening (HTVS) identified an inhibitor targeting B7-H3.
Results
Our findings demonstrate that increased infiltration of T cells within mouse tumor models correlates with reduced tumor burden, attributed to 12-HETE-induced lipid peroxidation mediated via the GPR31 pathway. This process significantly impairs cancer cell viability and cytotoxic functionality of CAR-T cells. Mechanistically, we elucidate that interaction between the B7-H3 protein and HRAS in ovarian cancer cells inhibits FOXO3 regulatory activity, subsequently influencing 12-LOX expression critical in lipid metabolism regulation. Importantly, HTVS identified HI-TOPK-032 as an effective inhibitor that restores CAR-T cell infiltration and functionality, synergizing notably with anti-PD-1 blockade. Notably, HI-TOPK-032 amplifies the anticancer effects of CAR-T cells in patient-derived xenograft models of ovarian cancer characterized by elevated B7-H3 and 12-LOX expression.
Conclusions
This study underscores the pivotal role of lipid metabolism in CAR-T cell therapy efficacy against MSLN-expressing solid tumors. Our findings highlight the innovative strategy of targeting lipid pathways to mitigate immune exhaustion, presenting HI-TOPK-032 as a promising adjunct to enhance CAR-T cell therapy outcomes. These insights advance the understanding of immune modulation in ovarian cancer and propose a novel therapeutic approach poised for clinical translation.
Legal entity responsible for the study
The authors.
Funding
Capital Medical University Laboratory for Clinical Medicine and Gynecological Tumor Precise Diagnosis and Treatment Innovation Studio.
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
110P - Safety and effectiveness of adebrelimab as first-line treatment in extensive-stage small-cell lung cancer: A prospective, real-world study
Presenter: Junxu Wen
Session: Poster Display session
111P - Real-world treatment patterns and clinical outcomes in Chinese stage III non-small cell lung cancer (NSCLC) patients: Results of MOOREA study
Presenter: Ligang Xing
Session: Poster Display session
112P - Serplulimab combined with chemotherapy and anlotinib for extensive-stage small-cell lung cancer: A multicenter real-world experience
Presenter: Jun Wang
Session: Poster Display session
113P - Clinical outcomes of avelumab and pembrolizumab in advanced urothelial cancer: An observational multicenter retro-prospective study on patients undergoing treatment in clinical practice (AVePEm study)
Presenter: Irene Torresan
Session: Poster Display session
115P - Immune-related adverse events in cancer patients treated with immune checkpoint inhibitors in Germany: A population-based study
Presenter: Lucie Heinzerling
Session: Poster Display session
116TiP - An umbrella trial (RECHALLENGE) to evaluate the safety and preliminary efficacy of combination or sequential immunotherapy in advanced solid tumor patients after disease progression in clinical trials
Presenter: Huilei Miao
Session: Poster Display session
122P - Intracellular adenosine drives profound lymphocyte suppression and can be reversed with EOS-984: A potent ENT1 antagonist
Presenter: Erica Houthuys
Session: Poster Display session
123P - Combination potential of EO-3021, a CLDN18.2 vc-MMAE ADC, with VEGFR2 or PD1 inhibition in preclinical models of CLDN18.2-expressing cancers
Presenter: Thomas O'Hare
Session: Poster Display session
124P - AI-designed cancer vaccines: Antigens from the dark genome are promising cancer vaccine targets
Presenter: Daniela Kleine-Kohlbrecher
Session: Poster Display session