Abstract 51P
Background
Challenges persist in CAR-T cell therapy for solid tumors, notably due to immune exhaustion within the tumor microenvironment. Mesothelin (MSLN) has emerged as a pivotal target for CAR-T therapy in ovarian cancer, yet overcoming functional exhaustion remains a critical hurdle. This study explores the role of lipid metabolites in modulating anti-MSLN CAR-T cell exhaustion, aiming to enhance therapeutic outcomes.
Methods
Anti-MSLN CAR-T cells were engineered to target ovarian cancer cells with high MSLN expression for in vitro and in vivo experiments. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) identified oxylipin 12-HETE as critical in CAR-T cell exhaustion. High-throughput virtual screening (HTVS) identified an inhibitor targeting B7-H3.
Results
Our findings demonstrate that increased infiltration of T cells within mouse tumor models correlates with reduced tumor burden, attributed to 12-HETE-induced lipid peroxidation mediated via the GPR31 pathway. This process significantly impairs cancer cell viability and cytotoxic functionality of CAR-T cells. Mechanistically, we elucidate that interaction between the B7-H3 protein and HRAS in ovarian cancer cells inhibits FOXO3 regulatory activity, subsequently influencing 12-LOX expression critical in lipid metabolism regulation. Importantly, HTVS identified HI-TOPK-032 as an effective inhibitor that restores CAR-T cell infiltration and functionality, synergizing notably with anti-PD-1 blockade. Notably, HI-TOPK-032 amplifies the anticancer effects of CAR-T cells in patient-derived xenograft models of ovarian cancer characterized by elevated B7-H3 and 12-LOX expression.
Conclusions
This study underscores the pivotal role of lipid metabolism in CAR-T cell therapy efficacy against MSLN-expressing solid tumors. Our findings highlight the innovative strategy of targeting lipid pathways to mitigate immune exhaustion, presenting HI-TOPK-032 as a promising adjunct to enhance CAR-T cell therapy outcomes. These insights advance the understanding of immune modulation in ovarian cancer and propose a novel therapeutic approach poised for clinical translation.
Legal entity responsible for the study
The authors.
Funding
Capital Medical University Laboratory for Clinical Medicine and Gynecological Tumor Precise Diagnosis and Treatment Innovation Studio.
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
54P - Superior antitumor activities of fourth-generation CAR-T cells containing three costimulatory domains targeting GD2-positive tumors
Presenter: Jatuporn Sujjitjoon
Session: Poster Display session
55P - Engineering of chimeric cytokine receptors (CCR) to induce IL-7 signaling to CAR-T cells for solid tumor treatment
Presenter: Marta Soria Castellano
Session: Poster Display session
56P - Potent antitumor efficiency of CD19-CAR T cells self-secreting PD-L1 x CD3 BiTE against aggressive B-cell lymphoma
Presenter: Jatuporn Sujjitjoon
Session: Poster Display session
57P - SENDER™ Directed LNP Delivery of mRNA for In Situ generation of highly potent CAR T Cells
Presenter: Biao Ma
Session: Poster Display session
58P - Cardiovascular outcomes of novel CAR-T cell therapies: A meta-analysis of incidence, risk factors, and management of cardiotoxicity
Presenter: Hashim Talib Hashim
Session: Poster Display session
59P - Long term survival data from all recurrent/metastatic head and neck squamous cell carcinoma (R/M HNSCC) patients treated with MVX-ONCO-1 during open-labelled phase I and phase IIa clinical trials
Presenter: Nicolas Mach
Session: Poster Display session
60P - Innovative applications of neoantigens in dendritic cell-derived exosome (DEX) therapy and their impact on personalized cancer treatment
Presenter: Ramon Gutierrez
Session: Poster Display session
61P - Optimized protocol for the accelerated production of dendritic cell-derived exosomes (DEXs): Achieving speed without compromising efficacy
Presenter: Ramon Gutierrez
Session: Poster Display session
62P - Ecto-CRT induction of NKp46 surface expression increases osimertinib-resistant lung cancer’s sensitivity to NK cells
Presenter: Sumei Chen
Session: Poster Display session
63P - Single-cell RNA-seq combined with bulk RNA-seq revealed the involvement of pancreatic cancer tissue-resident macrophages in tumour progression and the immunotherapy response
Presenter: Bin Wu
Session: Poster Display session